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Introduction

A network perspective on dementia: why?

Alzheimer’s disease
Having an intact brain is of vital importance to our quality of life; our cognitive abili-
ties, emotions, personality and behavior all depend on it. Therefore, when brain disease 
manifests itself, it forms a direct threat to the very core of our existence. Brain disorders 
come in many different forms, are often incurable, and place a large burden on patient, 
caregivers and society. This dissertation focuses on Alzheimer’s disease, the most 
prevalent type of neurodegenerative dementia. The gradual deterioration of the brain 
and cognitive functions occurring in Alzheimer’s disease patients is a humiliating experi-
ence. Unfortunately, this condition is now a fact of life for more people than ever: 30 
million people worldwide suffer from dementia, and this number is estimated to triple 
by 20501. Life expectancy is increasing in most parts of the world, and above the age of 
65 the chance of acquiring Alzheimer’s disease doubles every five years. For Alzheimer’s 
disease, as for most neurodegenerative diseases, there is no cure or effective treatment. 

Although in recent decades much has been learnt about the pathophysiology of 
Alzheimer’s disease, the exact relationship between brain damage and the gradual 
disruption of cognitive abilities is still poorly understood. For example, there is a large 
discrepancy between pathological burden and disease severity: persons with extensive 
damage are sometimes only mildly demented, while others with more subtle brain 
abnormalities can be clearly affected. In addition, there is a substantial pathological and 
clinical overlap between different forms of dementia, making an early and secure diag-
nosis more difficult to achieve. Therapeutic trials that have been aimed at amyloid-beta 
protein deposits, nowadays presumed to be one of the major pathological hallmarks, 
have produced disappointing results so far. It seems as if this pathological feature, 
which still forms the basis of most etiological hypotheses, is not the cause of Alzheimer’s 

“So we have to come to the conclusion, that the 
plaques are not the cause of senile dementia but 
only an accompanying feature...”

Aloysius “Aloïs” Alzheimer, 1911

Über eigenartige Krankheitsfälle des späteren Alters. 
Zeitschrift für die gesamte Neurologie und Psychiatrie 
4:356-385



Introduction, aims and outline 9

disease, but rather an intermediate or even accompanying feature (‘Begleiterscheinung’ 
according to Aloïs Alzheimer). Thus, considering the impact of Alzheimer’s disease on 
society, the incomplete understanding of the disease mechanism, and the lack of ef-
fective remedies, it is obvious that alternative perspectives and new approaches are 
desperately needed.

The main motivation for this dissertation is the hypothesis that a better understanding 
of brain activity and connectivity is essential to deal with cognitive dysfunction in general, 
and dementia in particular. These two aspects are crucial for cognitive processing, but 
have only played a marginal role in dementia research so far. Both technical limitations 
and advances may have contributed to this situation: while in recent decades structural 
brain imaging has greatly enhanced the spatial detail with which we can describe local 
brain abnormalities, no elegant method for accurately capturing and interpreting in 
vivo brain dynamics and connectivity has become generally available. This has favored 
a rather static and reductionist view of the brain as a collection of specialized regions as 
opposed to a highly dynamic, integrated system with distributed functions. However, 
a neglect of the brain’s dynamic nature and complex architecture is a serious concep-
tual limitation, since it largely ignores the question of how cognitive processes are 
coordinated throughout the brain. For this purpose, approaches that combine accurate 
acquisition of large-scale brain dynamics and connectivity with appropriate analytical 
tools are required. 

In this dissertation, the strategy of choice to explore the role of brain activity and con-
nectivity in Alzheimer’s disease is a combination of neurophysiology and graph theory. 
These two fundamental subjects will be briefly introduced in the next paragraphs, and 
will lead to the general aims and outline of this thesis.

Brain activity and neurophysiology
The human brain consumes 20% of the body’s energy supply, while its weight is only 
about 2% of the total body weight. It is by far the most active organ we have in our 
body, and most energy is devoted to its core business: fast and flexible communication 
between cells. Brain structure and dynamics are very closely related: the plastic brain 
develops, reshapes and reorganizes itself constantly under the influence of internal 
and external forces. Hence, brain structure and activity should ideally be investigated 
collectively and within a single conceptual framework. Reaching this goal is easier said 
than done: investigating a detailed description of the brain structure and dynamics of 
living human beings in an accurate, patient-friendly manner is still a major technical 
challenge. 

A crucial part of cognitive processing in the brain is accomplished by neurons; brain 
cells specialized in signal reception and transmission. When neurons receive signals 
from other neurons, it makes them more or less likely to fire, and pass on the signal to 
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other neurons. Instead of stimulating other neurons to fire, they can also inhibit the firing 
of others. So, the brain contains an enormous network of elements that are constantly 
stimulating and inhibiting each other. Since firing (groups of ) neurons essentially show 
repetitive, rhythmic behavior, they are often described as oscillators. Coupled oscilla-
tors influence each other, causing their firing rates to fasten, slow down or even stop. 
A mechanism that is presumed to be vital to neuronal interaction is synchronization: 
when (groups of ) neurons synchronize, they become more effective, and will exert a 
greater influence on their environment2. The selective routing of information needed 
to coordinate brain activity is realized by synchrony, and the level of synchronous firing 
between neuronal groups can be interpreted as the level of communication between 
them. 

When many neurons fire, oscillate and synchronize, they generate an electromagnetic 
field that can be detected outside the human head. Whereas electroencephalography 
(EEG) records the electric component of this field, magnetoencephalography (MEG) 
records the magnetic part. Both EEG and MEG can measure variations in brain activity 
at the scale of milliseconds. However, there are a few obstacles: first of all, the muscles, 
eyes and heart and even surrounding equipment, cars, buildings, etc. all produce elec-
tromagnetic fields that can distort the recording. Their influence must be minimized, 
and the use of shielded rooms and artifact filters are therefore important. Second, since 
EEG and MEG measure brain activity from the outside, there is uncertainty about the 
exact location of the activity source. Although mathematical techniques can be used 
to locate sources, there is no unique solution to this so-called inverse problem. A third 
important aspect is that since different EEG and MEG sensors pick up activity from com-
mon sources, computations of the strength of synchronization and thus communication 
between them is overestimated. This issue is called volume conduction, and it will be 
discussed later on in this thesis. 

Magnetoencephalography (MEG) system in upright position (source: 
Elekta ®)
Advantages of MEG over more traditional EEG are the cleaner signal, higher 
level of detail, and a shorter preparation time. Disadvantages are the 
necessity of a shielded room, immobility, and high cost.
Like EEG, MEG is completely non-invasive, silent, and it does not require 
radiation or strong magnetic fields.

To investigate how brain activity relates to cognitive abilities, it seems rational to 
measure brain activity during a mental task, such as reading, listening, counting or 
remembering. However, although task-based experiments have produced many impor-
tant results, the view of the brain as a reactive or task-solving organ may be only part 
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of the truth, as widespread intrinsic processing is taking place continuously, even in the 
absence of external stimuli. Therefore, in recent years a lot of attention has been placed 
on so-called resting-state brain dynamics and networks. The term is misleading, because 
the brain maintains its high level of activity at all times. In fact, the energy consump-
tion of the brain hardly increases (at most 5%) when cognitive tasks are performed3. 
In recent years, resting-state activity has been shown to display robust, characteristic 
patterns that are related to cognitive states and disease conditions. The studies in this 
thesis therefore focus on resting-state or ‘spontaneous’ brain activity, also because the 
performance of tasks requires instruction, which can be difficult or unreliable in test 
subjects, especially in dementia patients.

EEG literature shows that there is a gradual, diffuse slowing of brain activity and an 
overall loss of synchronization in Alzheimer’s disease4. Although the oscillatory slowing 
is a common finding, it is not specific and constant enough to be used as a powerful 
diagnostic or prognostic marker. At present, the role of EEG in the clinical diagnostic 
work-up of dementia is mainly based on the exclusion of other, non-neurodegenerative 
causes of cognitive impairment such as intoxication, epilepsy or encephalopathy. The 
development of reliable neurophysiologic markers for different forms of dementia is 
highly desired, since EEG/MEG are relatively fast and patient-friendly techniques that 
might simplify the diagnostic workup of dementia. Moreover, in order to understand the 
observed changes in activity and synchronization we need to go beyond the descriptive 
level, and find out how brain activity is actually coordinated.

Brain networks and graph theory
An exploration of how brain dynamics are coordinated automatically leads to an observa-
tion that is the second center point of this thesis: the brain is a network. And as with other 
complex networks, it is much more than just the sum of its parts: interactions between 
regions are vital to major cognitive functions such as vision, language, memory and execu-
tive function5. In other words, global network connectivity is just as (or for some abilities 
maybe even more) important as local function. However, even if we would have a detailed 
description of complete structural and dynamical brain networks, there would still remain 
a need for a meaningful framework to make sense of the enormous complexity: a lan-
guage of connectivity, that not only describes network features, but also explains their 
value. Fortunately, that language exists for smaller, more deterministic networks: graph 
theory. The application of graph theoretical principles to complex systems like the brain is 
giving rise to a new scientific field, often labeled as ‘modern network theory’.

Graph theory is a branch of mathematics that studies the principles of network ar-
chitecture. For example, it explores what organizational characteristics make a network 
robust, efficient, or flexible. It can explain the relation between network structure and 
function in a meaningful way. The human brain might be the most mysterious and 
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complex network or system known to man, but is certainly not the only one: social, eco-
nomical, biological, and infrastructural (to name a few) networks are everywhere around 
and inside us. The impressive amount of graph theoretical network knowledge has been 
successfully translated to many of these fields6. Graph theory has illustrated that in com-
pletely different networks, common principles and patterns can be found: mechanisms 
that are found in engineering or telecommunication may apply to the brain and vice 
versa. Many major problems in other complex networks such as disease epidemics, 
traffic jams, economic crises or computer viruses can’t be understood and solved by 
focusing on individual parts of the system, but require the system-level approach that 
graph theory offers. Likewise, using graph theory to investigate brain networks may be 
a powerful strategy to learn more about how the brain is wired, how it coordinates its 
activity, and how it copes with damage and illness.

Regardless of a network’s context, graph theory purely focuses on the patterns of 
its connectivity. Graphs (abstract representations of networks) consist of elements 
(nodes or vertices) and the connections between them (links or edges); all other details 
are irrelevant. The strength and pattern of the connections is what determines many 
major network characteristics, and numerous graph measures have been developed to 
describe these characteristics quantitatively.

On the left, the Prussian city of Koningsbergen. The famous mathematician Leonhard Euler (1707-1783) 
solved the ‘Seven bridges of Koningsbergen’ problem by using what is generally considered as the first 
graph theoretical proof. The middle picture is a schematic top view of the city parts and their connecting 
bridges. On the right, an even more abstract representation is shown: a graph, consisting of nodes and 
links. By stripping away irrelevant details and purely focusing on the pattern of connectivity, Euler proved 
that there is no trail that crosses each bridge just once and ends at its starting point: to allow this, every 
city part would need to have an even amount of bridges.

The brain is actually a multi-level network: there is the physical wiring of brain cells, 
referred to as the structural network or structural connectivity, and superimposed on 
this is the functional network, the dynamics or ‘traffic’ of the brain. The connections in 
functional brain networks represent the strength of interaction (measured by synchro-
nization in our case) between brain regions. The use of the term functional to refer to 
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dynamic connections or networks is slightly confusing, since structural characteristics 
of the brain contribute to its function just as well. It is also important to keep in mind 
that the distinction between the terms ‘structural’ and ‘functional’ is artificial to a certain 
extent: in reality, phenomena with overlapping time scales exist, such as spike-timing 
dependent plasticity and dendritic outgrowth.  Nonetheless, in this thesis we focus on 
functional networks, based on neurophysiological (EEG/MEG) data.

Brain networks can be studied at different scales: from the cellular, single-neuron level 
to the large-scale cortical region level. However, meaningful patterns of coordinated brain 
activity may emerge at any level; the most detailed level is not necessarily the most in-
formative one. Since neurophysiological techniques measure brain activity of large-scale 
regions containing millions of neurons, this limits the detail with which we can describe 
network dynamics. However, different scales and levels of detail can also be found in tem-
poral dimensions; in other words, there is meaningful information in brain dynamics at 
different frequencies, similar to radio stations emitting at different wavelengths. Therefore, 
capturing brain dynamics over a wide range of frequencies is of vital importance, and at 
present no technique is better suited for this purpose than EEG or MEG.

Graph theoretical analysis of brain networks may feel like an abstract step away from 
the biomedical reality of brain disease. However, the transition from experimental data 
to a theoretical environment also has benefits: brain network models can be analyzed 
and manipulated in ways that are impossible in real human brains. This opens the door 
to a very different approach than the top-down process of measuring patient data and 
trying to interpret it: with computational network models we can simulate network 
damage or repair, in order to understand or even predict what will happen in brain 
disease. With this complementary ‘in silico’ strategy we can try to discover principles 
that govern brain structure and function. Consequently, it may lead to new hypotheses 
about disease mechanisms that can then be verified in empirical data. 

Alzheimer’s disease: a form of network failure?
The realization that the brain is a network and that cognition depends on network 
integrity has important consequences for understanding cognitive impairment as well. 
Traditionally, a cornerstone of any clinical neurological examination is the localization of 
functional deficits in specific parts of the nervous system, and this approach is usually 
very effective. However, many neurological functions (even reflexes) cannot be attrib-
uted to single regions, and are critically dependent on the communication between 
different regions. Cognition thus emerges from the network as a whole, and traditional 
localization principles might not always work. For instance, we know that there is no 
single region in the brain whose failure causes dementia; it is a widespread, gradual 
deterioration of many brain parts and their connections. 
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Traditionally, a disconnection syndrome is characterized by symptoms that arise when 
connections between brain areas disappear or malfunction7,8. Although this term points 
towards the importance of collaboration in the brain, it is still based on the notion of 
localized function. And while higher cognitive functions such as memory and executive 
function might be so highly distributed over the brain that functional localization is no 
longer meaningful, Alzheimer’s disease has been labeled before as a disconnection syn-
drome, also based on the gradual, progressive loss of neurons and synapses9. This label 
might be considered a step forward compared to the idea that cognitive dysfunction 
is caused by dysfunction in a localized area, but it is also a rather generalist and vague 
term. Network theory can make more sense of connectivity and disconnectivity: it might 
thus be able to give us reasons why the effect of connectivity disruption between certain 
brain areas might be more catastrophic than between others. The observed changes in 
communication between different regions can then be used to better understand in 
which way this influences brain network characteristics like efficiency or robustness.

The classical disconnection syndromes. The pathways implicated in each syndrome are shown in red 
with the causal lesion in yellow. Wernicke is linked to both conduction aphasia and associative agnosia, 
the lesion in the former disconnecting Broca’s and Wernicke’s areas, the lesion in the latter disrupting the 
outflow of the visual cortex to other brain areas. Liepmann is linked to apraxia where the left-hand motor 
area is disconnected from other brain regions. Déjérine is linked to pure alexia in which the visual verbal 
centre is disconnected from visual areas in both hemispheres. Source: Catani and ffytche, The rises and 
falls of disconnection syndromes, Brain 2005 pp 2224–2239.
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Cognitive impairment might not just be the consequence of localized damage, but of a 
malfunctioning brain network as well. This may seem a rather trivial statement, but the 
realization that network dysfunction is not necessarily due to local problems can have 
large implications for therapeutic strategies. For example, interventions aimed at seem-
ingly unaffected brain parts or circuits may stabilize or improve global network function, 
and thus cognition10.

What can modern network science teach us about Alzheimer’s disease? Can we expect 
a better understanding, earlier detection, more accurate monitoring, or new hypotheses 
about the etiology of Alzheimer’s disease? Maybe all of the above, maybe none: it is too 
early to tell. The main challenge is finding the most appropriate set of features to de-
scribe and understand connectivity loss in dementia. A few years ago, scientific literature 
about graph analysis applied to neuroscientific data was virtually non-existent, let alone 
with regard to dementia. This has changed, and now there are original research papers 
every week, appearing in high-impact journals. The promise of complex network theory 
is that it will enable us to go beyond labeling disorders as ‘disconnection’ syndromes by 
making the meaning of disconnection much more explicit, thereby possibly providing 
clues about new strategies to prevent and/or manage cognitive impairment. Whether 
the ‘network perspective’ will be a successful weapon in the battle against Alzheimer’s 
disease is still uncertain; that it is a rational next step will hopefully become apparent 
from this work.
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Aims and outline

General aim

To gain more insight in the role of cerebral functional network topology in dementia, by 
describing the disruption of functional brain networks in Alzheimer’s disease (AD) with 
the use of graph theoretical and neurophysiological techniques, and by exploring its 
relationship to cognitive symptoms and pathological features. 

Specific aims and methods
To describe local and global abnormalities in oscillatory brain dynamics and functional 
connectivity in EEG and MEG data of Alzheimer patients.
•	 Spectral analysis. 
•	 Functional connectivity analysis 

To explore whether disruption of functional brain networks in AD can be meaningfully 
interpreted with the help of graph theoretical analysis.
•	 Graph theoretical analysis
	 •	 Global network measures 
	 •	 Subnetwork (module) analysis 
	 •	 Nodal measures 

To investigate whether abnormal patterns of functional network topology in Alzheimer 
patients are related to cognitive impairment.
•	 Statistical correlations between graph measures and cognitive performance 

To find plausible mechanisms underlying the observed structural and functional brain 
network damage in AD using computational modeling.
•	 Computational modeling of disease-related changes and mechanisms
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Outline

Since graph theoretical brain research is a relatively new and uncharted field, approach-
ing it from different angles seems a sensible strategy. This is somewhat reflected by the 
various methodological approaches taken in this thesis. However, the individual studies 
are also part of a larger picture: key observations in the first empirical studies lead to an 
explicit hypothesis about the possible pathophysiological mechanism of AD: Activity 
dependent degeneration (ADD). This prediction is then investigated by means of com-
putational modeling of neurodegeneration in the last study of this thesis.

In Module 2, we first investigate local differences of altered brain activity in AD by 
regional spectral power analysis of resting-state MEG data. Module 3 starts with a study 
that describes global functional network changes in different types of dementia, taking 
into account not only the brain dynamics within but also between regions. Next, an MEG 
study in AD examines functional network disruption in larger detail, and tests the rela-
tion between network damage and cognitive test scores. In addition, network damage 
in Alzheimer patients is simulated with two different network damage models to find a 
plausible underlying ‘disease’ mechanism. A third study deals with the identification of 
sub-networks or “modules” and their relation with cognitive impairment in AD. Module 
4 takes a different approach to describe network properties by looking at the graph 
spectrum. This approach may have several methodological advantages over the more 
‘traditional’ topological graph analysis. In module 5 a computational neural mass model 
combines realistic neurophysiological dynamics with a human structural brain network 
topology. This model is used to test the hypothesis that the earlier observed selective 
vulnerability of functional network hubs in AD is due to high levels of neuronal activity. 
Module 6 starts with a review on existing evidence for functional network disruption in 
neruodegenerative dementia, and then summarizes and integrates the findings of all 
studies, and discusses them with regard to the original aims of this thesis, and existing 
literature. In this module, methodological considerations and recommendations for 
future research will be discussed as well. 
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Abstract

Altered oscillatory brain activity in Alzheimer’s disease (AD) may reflect underlying 
neuropathological changes, and its characterization might lead to new diagnostic pos-
sibilities. The present study using quantitative magnetoencephalography (MEG) was set 
up to examine power spectrum changes in AD patients, and their diagnostic strength. 
Whole-head 151-channel MEG was recorded during an eyes-closed resting state. MEG 
channels were grouped in ten cortical regions, and both global and regional relative 
power was analyzed for the commonly used frequency bands.18 AD patients (mean age 
72.1 years ± 5.6 (SD); 7 females; mean MMSE 19.2, range: 13-25)  and 18 healthy controls 
(mean age 69.1 ± 6.8 (SD), 11 females; mean MMSE 29, range: 27-30) were recruited, 
controls being mainly spouses of patients. Relative power analysis showed significant 
differences in most frequency bands, particularly in the temporo-parietal regions, with 
some relation to MMSE scores. Greatest diagnostic accuracy was found in the beta band, 
especially in the right occipital area (sensitivity 94%, specificity 78%). Quantitative rela-
tive power analysis of MEG recordings is able to show widespread abnormalities in oscil-
latory brain dynamics in AD patients. By analyzing distinct cortical regions, this study 
provides a more detailed topographical view of abnormal brain activity in AD. 
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Introduction

Alzheimer’s disease (AD) is the most prevalent form of dementia, and is imposing an 
increasing burden on our society [Andlin-Sobocki et al. 2005;Olesen and Leonardi 
2003;Jonsson and Berr 2005]. Despite a massive boost in knowledge about the patho-
physiological processes involved in AD over the past few decades, there is currently no 
antemortem test (or set of tests) that can provide a definitive diagnosis. Besides that, 
due to the neurodegenerative nature of the disease there exists a substantial delay 
between the moment of onset and the clinical diagnosis of AD [Cummings et al. 1998]. 
A more powerful diagnostic routine would be of great value for obvious reasons such 
as clarity for patients, greater interventional possibilities, and a better understanding of 
the disease in general. 

In the most commonly used NINCDS-ADRDA criteria [McKhann et al. 1984], the diagnosis 
of AD is based upon a combination of clinical, laboratory and imaging tests. At this mo-
ment there is no prominent place for neurophysiologic tests in these guidelines, but 
since techniques extracting specific quantitative features from EEG and MEG (magneto-
encephalography) recordings seem more and more capable of relating brain activity to 
cognitive function, they might become important contributors in the quest for an earlier 
and more decisive diagnosis of AD (for a review see [Jeong 2004])

Quantitative EEG studies have been conducted in AD patients for several decades, and 
have demonstrated a slowing of the dominant oscillatory brain activity, in particular 
over the posterior temporal, parietal and occipital brain areas [Boerman et al. 1994], 
[Jonkman 1997], [Jeong2004]. This slowing has been correlated with brain atrophy, 
APOE genotype and low central cholinergic activity [Lehtovirta et al. 1996], [Riekkinen et 
al. 1991]. The EEG, however, has not yet proven to be sufficiently discriminative to play 
a major role in the diagnostic workup of AD, and is primarily used for exclusion of other 
diagnoses [Waldemar et al. 2007].

Due to its superior temporal and spatial resolution, magnetoencephalography (MEG) 
is a promising neurophysiologic technique [Ioannides 2006]. Until now, MEG in AD has 
chiefly been used in more experimental research settings concerning task-related activ-
ity, source localization or functional connectivity (for a review see [Criado et al. 2006]). 
However, resting-state spectral analysis should be sufficient to produce noteworthy dif-
ferences between AD patients and controls, and is perhaps more convenient for clinical 
settings. The few studies concerning spectral analysis of resting-state MEG recordings 
confirm the diffuse slowing of brain activity in AD, but they do not offer a straightfor-
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ward relative power analysis for the commonly used frequency bands and for specific 
cortical regions [Berendse et al. 2000;Fernandez et al. 2006a;Fernandez et al. 2006b].

Therefore, in this study we grouped the MEG channels in ten distinct cortical regions, 
and analyzed the relative power both from a global and regional perspective. We also 
tested the correlation between relative power and cognitive status, and examined the 
diagnostic accuracy of relative power values.

Methods

Subjects

The study involved 18 patients (mean age 72.1 years ± 5.6 (SD); 7 females; mean MMSE 
19.2, range: 13-25) with a diagnosis of probable AD according to the NINCDS-ADRDA 
criteria [McKhann, Drachman, Folstein, Katzman, Price, and Stadlan1984] and 18 healthy 
control subjects (mean age 69.1 ± 6.8 (SD), 11 females; mean MMSE 29, range: 27-30), 
mostly spouses of the patients. Patients and control subjects were recruited from the 
Alzheimer Center of the VU University Medical Center. Subjects were assessed according 
to a clinical protocol, which involved history taking, physical and neurological examina-
tion, blood tests, a set of neuropsychological tests including a Dutch version of the MMSE 
[Folstein et al. 1975], MRI of the brain according to a standard protocol, and routine EEG. 
The final diagnosis was based upon a consensus meeting where all the available clinical 
data and the results of the ancillary investigations were considered. The MEG recordings 
were performed several weeks later. The study was approved by the Local Research Eth-
ics Committee, and all patients or their caregivers had given written informed consent. 
The same MEG recordings were used for a study of functional connectivity in AD [Stam 
et al. 2006].

MEG recording

Magnetic fields were recorded while subjects were seated inside a magnetically shielded 
room (Vacuumschmelze GmbH, Hanau, Germany) using a 151-channel whole-head MEG 
system (CTF Systems Inc., Port Coquitlam, BC, Canada). Average distance between sen-
sors in this system is 3.1 cm. A third-order software gradient (Vrba et al., 1999) was used 
with a recording pass band of 0.25 to 125 Hz. Sample frequency was 625 Hz. Fields were 
measured during a no-task eyes-closed condition. 

At the beginning and at the end of each recording, the head position relative to the 
coordinate system of the helmet was recorded by leading small alternating currents 
through three head position coils attached to the left and right pre-auricular points and 
the nasion on the subject’s head. Head position changes during the recording up to 
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approximately 1.5 cm were accepted. During the MEG recording, patients were sitting 
comfortably, and were instructed to close their eyes and move as little as possible. 

Data processing

For further off-line processing, the recordings were converted to ASCII files and down-
sampled to 312.5 Hz. Visual inspection and selection of the time segments was done 
with the DIGEEGXP software (CS) by two of the investigators (BFJ and IM). For each sub-
ject, three artifact-free time segments of 4096 samples (13,083 s) were selected. Typical 
artifacts were related to eye movements or muscle contractions.

 For each selected time segment, relative power for all separate MEG channels was cal-
culated in several frequency bands (delta 0.5-4 Hz, theta 4-8 Hz, alpha1 8-10 Hz, alpha2 
10-13 Hz, beta 13-30 Hz and gamma 30-50 Hz) using the Fast Fourier Transformation. 
Results of the three segments were averaged for each subject. Subsequently, the MEG-
channels were clustered into regions of interest corresponding to the major cortical 
areas (frontal, central, temporal, parietal and occipital) on the left and right side. The 
midline channels were left out of this clustering. A schematic distribution of these areas 
is shown in Fig. 1. The mean relative power for each of these groups was transformed 
with a logarithmic function (x=log[1/1-x]) to obtain a Gaussian distribution for further 
statistical analysis [Gasser et al. 1982].

Figure 1: A schematic view of the head from above with MEG sensors grouped into 10 cortical regions. 
The number printed between parentheses indicates the number of MEG channels used. Midline sensors 
are shown in black (9 channels), and were left out of the analysis. LF = left frontal (16), RF = right frontal 
(16), LC = left central (15), RC = right central (15), LT = left temporal (20), RT = right temporal (20), LP = left 
parietal (9), RP = right parietal (n=9), LO = left occipital (n=10), RO = right occipital (n=10).
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Statistical analysis

Subject characteristics of the AD patients and the controls were checked for possible 
significant differences in age or gender between the groups. MEG data was analyzed 
in several ways: first, an univariate ANOVA (general linear measurement with repeated 
measures) with group as intersubject factor, cortical area as intrasubject factor, and age 
as covariate was performed for all frequency bands, using Greenhouse–Geisser cor-
rected p-values. A more descriptive comparison of means using independent-measure 
Student t-tests was made when appropriate.

Correlation analysis between MMSE score and relative power was performed for the 
AD patient group by means of Pearson’s bivariate correlation test.

Receiver operating curves (ROC) were plotted of the global relative power in each fre-
quency band, and of the separate regions. All analyses were performed at a significance 
level of .05 (two-tailed). Analysis was done using the SPSS 14.0 software package (SPSS 
inc., Chicago, USA).

Results

Subject characteristics

Our project involved 18 AD patients and 18 healthy participants, whose characteristics 
are summarized in table 1. Differences in age and gender distribution between the 
groups were not significant. Six AD patients had been using cholinergic medication for 
a short period before the MEG registration was performed, either galantamine (Reminyl) 
24 mg, or rivastigmine (Exelon) 12 mg. The delay between the primary diagnostic tests 
and the MEG registration was usually several weeks.

Table 1: Subject characteristics

Alzheimer group (n=18) Control Group (n=18)

Age (yrs) 72.1 ± 5.6 (SD) 69.1 ± 6.8 (SD)

Sex ratio (M/F) 11/7 7/11

MMSE score (points) 19.2 ( range 13-25) 29 (range 27-30)

Cholinergic medication1 (n) 6 0

Duration of complaints (yrs) 2.5 NA

Subject Characteristics. SD: standard deviation. NA: not applicable.  1 Reminyl 24mg or Exelon 12 mg.

Global relative power

The analysis of variance (ANOVA) results for each frequency band are shown in table 2. 
In the delta band a significant effect was found for Area x Group within subjects, and a 
significant effect of Group between subjects, with a consistently higher relative power in 
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the AD patient group. In the alpha1 band, a significant effect of Area x Group was found 
within subjects, and a significant effect of Group between subjects. Here, the relative 
power was significantly lower in AD patients. In the alpha2 band a significant effect was 
found of Area within subjects, and in Group between subjects. In the beta band a highly 
significant effect was found for Group between subjects. In these last two frequency 
bands relative power was significantly lower in AD.

Table 2: ANOVA of global relative power values for each frequency band

Within Subjects Between Subjects

Area Area x Age Area x Group Age Group 

Delta F[9,297]=0.715 
p<0.577 

F[9,297]=0.440 
P<0.771 

F[9,297]=4.793 
p<0.001 

F[1,33]=0.100 
p<0.754 

F[1,33]=7.530 
p<0.010 

Theta F[9,297]=0.811 
p<0.500 

F[9,297]=0.893 
P<0.455 

F[9,297]=1.556 
p<0.200 

F[1,33]=0.009 
p<0.926 

F[1,33]=0.823 
p<0.371 

Alpha 1 F[9,297]=0,176 
p<0.935 

F[9,297]=0.492 
P<0.718 

F[9,297]=3.086 
p<0.023 

F[1,33]=0.000 
p<0.999 

F[1,33]=8.054 
p<0.008 

Alpha 2 F[9,297]=3.122 
p<0.026 

F[9,297]=1.631 
P<0.184 

F[9,297]=2.109 
p<0.099 

F[1,33]=0.799 
p<0.378 

F[1,33]=7.591 
p<0.009 

Beta F[9,297]=0.877 
p<0.467 

F[9,297]=0.172 
P<0.934 

F[9,297]=2.232 
p<0.080 

F[1,33]=0.134 
p<0.717 

F[1,33]=14.005 
p<0.001 

Gamma F[9,297]=1.111 
p<0.340 

F[9,297]=1.282 
P<0.285 

F[9,297]=1.874 
p<0.156 

F[1,33]=0.137 
p<0.713 

F[1,33]=2.059 
p<0.161 

Mean relative power values for all cortical regions together were analyzed for each separate frequency 
band. In this figure, F values and their significance are shown, both for ‘within subject’ analysis (left of 
vertical line), and for ‘between subject’ analysis. Degrees of freedom are printed between square brackets. 
Bold text represents a significant effect on the variance in spectral power.

In addition, we performed t-tests to quantify differences in global relative power for 
the frequency bands that produced significant effects in the ANOVA. As expected, delta 
activity was increased in AD patients, whereas alpha1, alpha2 and beta activity was 
decreased. Particularly the beta band (13-30 Hz) showed a very significant decrease in 
relative power in the patient group (p<0.001).

Relative power per region

There were remarkable differences in relative power behavior between the various 
cortical regions, both in AD patients and controls. Figure 2 offers a visual comparison 
of means for the separate cortical regions in each frequency band. In general, temporal, 
parietal and occipital relative power changes were more outspoken. In the theta band 
the differences between AD patients and controls were not significant, but relative 
power was consistently higher in the AD group. The gamma band showed highly vari-
able results, with only a significant decrease in relative power of the left temporal region. 
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In the beta band, all separate cortical regions demonstrated a significant decrease of 
relative power in AD. 

Figure 2: Relative power differences between AD patients and controls

Correlation relative power with MMSE score

Bivariate correlation (Pearson’s) tests of relative power and MMSE scores were performed 
for global relative power and for the separate cortical regions. This was done only for the 
AD patient group. Global relative power values in the various frequency bands did not 
have a significant correlation with MMSE. In the alpha1 band, the left and right central 
regions showed a significant positive correlation (r=0.527; p=0.25 and r=0.531; p=0.23 
respectively), as well as the right parietal cortical region (r=0.503; p=0.33). In the alpha2 
band the left central region demonstrated a significant positive correlation (r=0.495; 
p=0.35). 



Resting-state oscillatory brain dynamics in Alzheimer’s disease 27

Diagnostic accuracy

The discriminative capability of the global relative power was investigated by plotting 
receiver operating characteristic (ROC) curves. In figure 3 the ROC curves are shown for 
the various frequency bands. The greatest diagnostic accuracy, defined as the highest 
percentage of correctly classified subjects, was reached in the beta band (area-under-
the-curve of 0.864). Using a relative power cut-off point of 0.105 produced a sensitivity 
of 94% and a specificity of 67%. 

The same procedure was performed for single cortical regions, and the maximum 
diagnostic accuracy was obtained in the right occipital region in the beta band (area-
under-the-curve 0.867, cut-off point 0.105: sensitivity 94%, specificity 78%). There were 
large differences between the discriminative capability of the various regions.

Figure 3: ROC curves of global relative power values in different frequency bands, showing the ability of 
relative power values to discriminate between AD patients and controls. Different colors indicate different 
frequency bands. The gamma band is not shown because of inconsistent classification performance.

Discussion

The results of this MEG study confirm the slowing of resting-state oscillatory brain activ-
ity in AD, and add a more detailed topographic picture. In this section we will discuss the 
meaning of our main findings in the light of previous studies, and make a few remarks 
about relevant theoretical issues before concluding.
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Methodological considerations

The multi-step process from a MEG registration to statistical analysis poses many inter-
esting technical and interpretational difficulties, and knowledge about topics like for 
example measurement conditions, artifact selection, and mathematical techniques can 
probably be expanded and refined.

Medication that influences the cholinergic system can influence the EEG and the MEG 
results, most likely by reverting the slowing of activity due to AD pathology [Adler and 
Brassen 2001], [Osipova et al. 2003]. In our study, 6 of the 18 patients used a cholines-
terase inhibitor (Reminyl or Exelon) for a short period prior to the MEG registration. To 
determine the possible influence of drug use on our results, we compared relative power 
results between AD patients who did and who did not use cholinesterase inhibitors. 
No significant differences were found, which suggests that our results are unlikely to 
be strongly influenced by medication effects. If a medication bias would exist, it would 
probably lead to underestimation of the differences between AD en controls. Of course, 
one question that remains is whether the persons that were selected for medication 
form a certain sub-group for some unknown reason.

Global relative power

The global increase in low frequency power (delta and theta band, <8 Hz) and decrease 
in high frequency power (alpha, beta and gamma bands, 8-50 Hz) that we found in AD 
patients is in agreement with previous EEG and MEG studies [Jeong2004], [Berendse, 
Verbunt, Scheltens, van Dijk, and Jonkman2000;Fernandez, Hornero, Mayo, Poza, Mae-
stu, and Ortiz2006b;Osipova et al. 2005]. Fernandez et al. [2006] performed an elaborate 
2 Hz-width sub-band analysis of relative power values, and produced similar results. A 
notable difference between this study and ours was the significant relative power de-
crease we found in the Alpha1 band (8-10 Hz) in AD patients. Perhaps this discrepancy 
is due to different data post-processing or statistical methods used. The highly signifi-
cant changes in the beta band are an interesting similarity of both studies. Claus et al. 
also pointed to the prominent role of the beta band in several EEG studies [Claus et al. 
1998b;Claus et al. 1998a;Claus et al. 2000]. We agree that the beta band results indicate 
a promising terrain for further research, and our characterization of regions provides a 
possible next step.

Cortical regions

Our rationale for grouping the MEG channels into local regions is twofold: first, EEG and 
MEG literature suggests remarkable topographic variety of oscillatory brain activity, both 
in spectral analysis and in source localization studies [Fernandez et al. 2006c;Fernandez 
et al. 2002;Maestu et al. 2003;Osipova et al. 2006;Osipova, Ahveninen, Jensen, Ylikoski, 
and Pekkonen2005;Jeong2004;Criado, Amo, Quint, Kurelowech, and Otis2006]. So for 
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comparison with previous literature, this local perspective gives a more accurate view. 
Second, from a more fundamental point of view, understanding the relationship be-
tween pathologic changes and abnormal functioning of the brain in AD requires a more 
detailed knowledge of local neurophysiologic dysfunction. It should be clear, however, 
that the grouping of MEG channels based on the major cortical areas is arbitrary, and 
that the regions formed do not necessarily reflect distinct functional units with clearly 
defined boundaries. 

In our study, each cortical region showed abnormal oscillatory behavior across various 
frequency bands in AD patients. We sometimes found significant changes in a region 
when the global relative power for that frequency band did not produce any. Also, like 
previous EEG studies, our findings indicate that most marked changes seem to occur in 
the posterior temporal, parietal and occipital regions [Boerman, Scheltens, and Weinste
in1994;Jonkman1997;Jeong2004], which corresponds with the area’s with most marked 
pathological change in AD [Arnold et al. 1991]. Left temporal slow activity increase is 
often prominent in AD [Gianotti et al. 2007;Osipova, Ahveninen, Jensen, Ylikoski, and 
Pekkonen2005], and is related to left hippocampal volume loss [Fernandez et al. 2003]. 
In this study, the left temporal region produced most often a significant change in the 
various frequency bands. Central and frontal region changes were more modest, and 
perhaps the more anterior localization of alpha and beta rhythms in progressing AD 
[Huang et al. 2000] can partly account for this.

Examining both local brain activity and functional connectivity of different regions 
might contribute to understanding the pathophysiology of Alzheimer’s disease. Using 
the same MEG recordings as studied here, Stam et al. found significant differences in 
Synchronization Likelihood ( a non-linear measure of functional connectivity) between 
AD patients and controls; resting-state functional connectivity in Alzheimer’s disease is 
characterized by specific changes of long and short distance interactions in the theta, 
alpha1, beta and gamma bands [Stam, Jones, Manshanden, van Cappellen van Walsum 
AM, Montez, Verbunt, de Munck, van Dijk, Berendse, and Scheltens2006]. The fact that 
regional relative power values behave differently is in our opinion a strong argument in 
favor of using regions. 

Resting-state brain activity and cognitive performance

Our study was conducted during an eyes-closed no-task condition. One might raise 
the question whether resting-state activity should be correlated to performance on 
a task-related cognitive test. Nevertheless, in several resting-state EEG studies there 
[Gianotti, Kunig, Lehmann, Faber, Pascual-Marqui, Kochi, and Schreiter-Gasser2007;Jelic 
et al. 2000;Kwak 2006] were apparent correlations, and the Synchronization likelihood 
( see previous section) also demonstrated significant correlations with MMSE scores in 
the alpha1 and alpha2 band [Stam, Jones, Manshanden, van Cappellen van Walsum AM, 
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Montez, Verbunt, de Munck, van Dijk, Berendse, and Scheltens2006]. The correlation of 
relative power values with MMSE scores in our study was not very strong. This might 
partly be explained by the modest group size. Nevertheless, there were clear differences 
between regions; some showed a consistent trend in various frequency bands, whereas 
others did not.

A number of studies have shown that the ‘resting state’ is a far more stable and ac-
tive condition than has often been assumed, and is characterized by the activation of 
a ‘default’ network, which consists of frontal, posterior cingulate, parietal and medial 
temporal areas [Laufs et al. 2003] [Raichle et al. 2001]. Abnormalities of this resting-state 
network have been demonstrated in AD [Lustig et al. 2003], as well as in Parkinson’s 
Disease [Stoffers et al. 2007]. Although the use of specific tasks, aimed at activating brain 
areas assumed to be involved in pathology, might be expected to be more sensitive in 
demonstrating abnormalities [Morcom and Fletcher 2006], this is often not the case. 
One reason might be that pathology may be associated with abnormally high as well 
as abnormally low task-related activation, which seriously complicates interpretation of 
the results [Osipova, Ahveninen, Jensen, Ylikoski, and Pekkonen2005;Pijnenburg et al. 
2004]. Since the definition and relation of such a ‘default network’ to cognition is not 
yet clear, questions are raised if it should be seen as a meaningful entity at all, and the 
validity of using a resting state to study cognitive performance remains a subject of 
discussion. Most important for the clinician, however, is the fact that the resting-state 
condition is sufficient to demonstrate remarkable changes in AD. 

Diagnostic strength

A general problem in assessing the diagnostic strength of a test in AD is the inevitable 
circular reasoning that is involved, since there is no ultimate standard to compare results 
with; there is always a chance that a person does not have AD, but a different neurode-
generative problem, and thus a 100% accurate test would ‘only’ be as good as the pres-
ent set of criteria. However, high sensitivity and specificity rates are still valuable. Can 
spectral analysis of MEG recordings contribute to achieving an earlier diagnosis of AD? 
In this study, the global relative power analysis reached a fair discriminative accurate-
ness, notably in the beta range, and this is comparable with the results of Fernandez et 
al. [2006], and at least equivalent to EEG accuracy. The best classification score reached 
by a single region (right occipital region in the beta band) was comparable to the global 
beta band accuracy. However, there were striking differences between cortical regions, 
and this suggests that a regional approach might eventually produce greater diagnostic 
power. 

Obviously, the AD patients in this study already had reached a clinical diagnosis of 
‘probable AD’ based on the NINCDS-ADRDA criteria. The real challenge is to separate AD 
patients and others at an earlier stage. Fernandez et al. compared mean relative power 
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values of AD and MCI patients to controls, and found significant differences[Fernandez, 
Hornero, Mayo, Poza, Gil-Gregorio, and Ortiz2006a]. Other investigations suggest the 
ability of quantitative EEG and MEG methods to discriminate at an early stage between 
AD patients and healthy persons [Prichep 2007]. However, results are not yet strong 
enough to give EEG or MEG a prominent place in the diagnostic work-up of AD; more 
studies are needed to assess the potential clinical benefit.

Conclusion

Quantitative analysis of MEG registrations is able to show widespread abnormal pat-
terns of resting-state oscillatory brain activity in AD patients. This is the first MEG study 
to provide a regional relative power analysis for the commonly used frequency bands 
in AD. In our opinion it gives a more detailed view of abnormal activity in AD, enables 
better comparison between MEG and EEG literature, and may contribute to more exact 
future studies and a more prominent role of MEG in the diagnostic work-up of AD.
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abstract 

Background: Although a large body of knowledge about both brain structure and func-
tion has been gathered over the last decades, we still have a poor understanding of 
their exact relationship. Graph theory provides a method to study the relation between 
network structure and function, and its application to neuroscientific data is an emerg-
ing research field. We investigated topological changes in large-scale functional brain 
networks in patients with Alzheimer’s disease (AD) and frontotemporal lobar degen-
eration (FTLD) by means of graph theoretical analysis of resting-state EEG recordings. 
EEGs of 20 patients with mild to moderate AD, 15 FTLD patients, and 23 non-demented 
individuals were recorded in an eyes-closed resting-state. The synchronization likeli-
hood (SL), a measure of functional connectivity, was calculated for each sensor pair 
in 0.5–4 Hz, 4–8 Hz, 8–10 Hz, 10–13 Hz, 13–30 Hz and 30–45 Hz frequency bands. The 
resulting connectivity matrices were converted to unweighted graphs, whose structure 
was characterized with several measures: mean clustering coefficient (local connectiv-
ity), characteristic path length (global connectivity) and degree correlation (network 
‘assortativity’). All results were normalized for network size and compared with random 
control networks. 

Results: In AD, the clustering coefficient decreased in the lower alpha and beta bands 
(p < 0.001), and the characteristic path length decreased in the lower alpha and gamma 
bands (p < 0.05) compared to controls. In FTLD no significant differences with controls 
were found in these measures. The degree correlation decreased in both alpha bands 
in AD compared to controls (p < 0.05), but increased in the FTLD lower alpha band 
compared with controls (p < 0.01). 

Conclusion: With decreasing local and global connectivity parameters, the large-scale 
functional brain network organization in AD deviates from the optimal ‘small-world’ 
network structure towards a more ‘random’ type. This is associated with less efficient 
information exchange between brain areas, supporting the disconnection hypothesis 
of AD. Surprisingly, FTLD patients show changes in the opposite direction, towards a 
(perhaps excessively) more ‘ordered’ network structure, possibly reflecting a different 
underlying pathophysiological process. 
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Background 

Understanding the relation between structure and function of the brain is one of the ba-
sic questions of neuroscience. Although a large body of knowledge about both healthy 
and pathological brain structure and function has been gathered over the last decades, 
we still have a poor understanding of their exact relationship. A clinical illustration of 
this state of affairs is dementia, a syndrome in which the link between pathophysiology 
and clinical symptoms is often ambiguous. There is a general consensus that cognition 
is a highly distributed and dynamic process, and thus depends on the coordinated 
interaction between many brain regions. It therefore seems reasonable to assert that ap-
proaches with an emphasis on structural damage will not be able fully explain cognitive 
(dys)function, since the complex interactions and interdependencies between different 
regions are neglected. A more complete perspective would have to take into account 
both the local and the global structural changes as well as the dynamics of the brain, 
and the way these different aspects are related. Therefore, several authors have argued 
that in addition to our present knowledge a more integrative network or system view on 
the brain is necessary [1-3]. Over the last decade, due to the development and interdisci-
plinary combination of techniques and methods, network analysis applied to biological 
research fields such as immunology, genetics and neuroscience has taken a great flight. 

A novel approach, applying concepts from graph theory (a branch of the mathematical 
field of complex network theory) to neurophysiological data, is a promising new way to 
characterize brain activity [4-6]. It provides a method to evaluate whether the functional 
connectivity patterns between brain areas resemble the organization of theoretically 
efficient, flexible or robust networks (based on the strenght of synchronization in the oscil-
latory electromagnetic activity of different brain regions as measured by EEG or MEG). A 
fundamental hypothesis is that cognitive dysfunction can be illustrated and/or explained 
by a disturbed functional organization. Applied to patient data, this technique might 
provide more insight in the pathophysiological processes underlying the various forms of 
dementia, and potentially lead to the development of new diagnostic or monitoring tools. 

Graph theory provides a method to study the relation between network structure and 
function, concerning for example qualities such as network efficiency, robustness, cost, 
or growth. Watts and Strogatz introduced so-called ‘small-world’ networks, that have an 
optimal balance between local specialization and global integration [7]. Small-world 
networks are optimal in the sense that they allow efficient information processing, are 
(wiring) cost-effective, and relatively resilient to network damage. Many real-life sys-
tems appear to have small-world properties [79]. Both anatomical and functional brain 
networks can be described by forming graphical network representations based on the 
measured (functional) connections. The presence of small-world network organization 
in brains of healthy humans was confirmed in numerous studies [5,6,10-14]. A few stud-
ies have recently shown that different types of brain pathology interfere with the normal 
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small-world architecture [15-17]. Furthermore, a loss of small-world network properties 
in several frequency bands of EEG and MEG recordings in AD has been reported, with a 
more ‘random’ overall network structure [12,18]. Loss of small-world structure in AD was 
also demonstrated in recent MRI studies applying graph theory [19,20]. 

In view of these findings, one might speculate that other types of dementia also 
demonstrate a disturbance of the ‘normal’ small-world configuration of brain networks, 
perhaps even in a disease-specific way. This hypothesis is explored in the present study. 

Many network characteristics can be used to examine neuroscientific data [5,6]. 
Since our current interest was mainly with (loss of ) general structure, we expanded our 
analysis with a third measure, the so-called ‘degree correlation’ (R) [8,21]. It describes 
the tendency of nodes to form connections with nodes with similar degree. With a posi-
tive degree correlation, the chance that a node with a certain amount of connections 
neighbors other nodes with approximately the same amount of connections is larger. 
When this is the case for many nodes, a graph is called ‘assortative’. Interestingly, most 
social networks tend to be assortative, while most biological networks tend to be disas-
sortative. Assortative networks are thought to be better connected as a whole, and more 
robust to damage, i.e. deletion of connections [22]. 

In FTLD, a neurodegenerative disorder that is associated with more focal pathology 
in the frontal and/or temporal areas, we expected to find changes in functional net-
work organization, but not identical to the situation in AD. The observation that many 
patients with a clinical manifestation of FTLD lack typical structural abnormalities on 
neuro-imaging suggests that functional changes might play a more important role [23]. 
We therefore set out to study functional networks both in patients with AD and FTLD. 
Subjects and EEG data were identical to Pijnenburg et al. [24]. 

Results 

Subject characteristics 

The main subject characteristics are summarized in Table 1. The FTLD group consisted of 
more males than the other two groups. Therefore, both SL and network measures were 
assessed for each gender group, not leading to any significant differences. 
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Table 1 – Subject Characteristics

AD FTLD Controls Significance

Age 65.5 (51-76) 63 (43-79) 59 (49-78) p=0.48

M:F 7:13 12:3 14:9 p=0.02

MMSE 21.5 (14-27) 24.5 (13-30) 29 (27-30) p=0.091

p<0.0012

p=0.0023

1=AD compared to FLTD, 2=AD compared to controls, 3=FTLD compared to controls. AD=Alzheimer’s 
disease, FTLD=frontotemporal lobar degeneration, M=male, F=female 

Graph analysis 

All subjects demonstrated small-world network properties in all frequency bands, 
expressed by the finding that the small-worldness (σ) values were larger than 1 in all 
frequency bands. In our study, the only significant change in σ was found in the AD 
group, where a decrease compared to controls was found in the beta band (p < 0.05). 

Clustering coefficient, characteristic path length and degree correlation results have 
been summarized in figures 1, 2 and 3. The mean, normalized clustering coefficient (γ) 
was decreased in AD compared to controls in the lower alpha (p < 0.05) and beta (p < 
0.05) frequency bands. FTLD showed a non-significant but constant trend in opposite 
direction in the higher frequency bands. In all frequency bands, AD and FTLD median 
values changed in opposite directions, reaching significance in both alpha bands (p < 
0.01). 

The normalized characteristic path length (λ) was decreased in AD compared to con-
trols in the lower alpha (p < 0.05) and gamma (p < 0.01) frequency bands. In those same 
bands, the difference between AD and FTLD was highly significant (p < 0.01 and p < 
0.05, respectively). In the FTLD group, no differences with the control group were found. 

The degree correlation (R) was decreased in AD compared to controls and FTLD in 
both alpha frequency bands (p < 0.05 and p < 0.01, respectively). In FTLD compared 
to controls, the increase in R was highly significant in the lower alpha band (p < 0.01). 
All normalized network measures were within the same range as previously reported 
results (see also table 2). 

Correlation between AD network characteristics and MMSE score 

In the AD group, MMSE score was documented in 21 out of 23 subjects. In the lower 
alpha band in AD, normalized characteristic path length (λ) was positively correlated 
with MMSE score (r = 0.50, p < 0.05). 
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Figure 1 Clustering coefficient. Boxplots showing differences in normalized clustering coefficients (γ) for 
the separate frequency bands. Alpha1= lower alpha band (8-10 Hz), alpha2= upper alpha band (10-13 Hz).

Figure 2 Path length. Boxplots showing differences in normalized path lengths (λ) for the separate 
frequency bands. Alpha1= lower alpha band (8-10 Hz), alpha2= upper alpha band (10-13 Hz).
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Figure 3 Degree Correlation. Boxplots showing differences in degree correlation (R) for the separate 
frequency bands. Alpha1= lower alpha band (8-10 Hz), alpha2= upper alpha band (10-13 Hz).

Table 2 – Comparison of small-world characteristics with AD network literature.

Study group N γ λ σ

Present study Control group 21 1.67 1.11 1.50

EEG (Stam 2007) Healthy controls 21 1.58 1.07 1.48

MEG (Stam 2004) Healthy controls 126 4.20 1.80 2.30

fMRI (Supekar 2008) Healthy controls 90 1.74 1.05 1.66

Present study AD 21 1.61 1.08 1.49

EEG (Stam 2007) AD 21 1.60 1.12 1.43

fMRI (Supekar 2008) AD 90 1.56 1.04 1.50

Present study FTLD 21 1.73 1.12 1.55

Comparison for unweighted network characteristics of the present study with earlier reported work. 
Although there are considerable methodological differences between these studies, all results indicate 
that network structure in both healthy persons and AD patients fall can be described as having Small-
world network characteristics (σ>1). N= number of nodes in the graph, γ=normalized clustering 
coefficient, λ=normalized characteristic path length, σ= small-worldness (γ/ λ). In the EEG and MEG 
studies, values have been averaged over all frequency bands.
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Discussion 

In this study we applied graph analysis to resting-state EEG data of AD, FTLD and con-
trol subjects to characterize the large-scale organization of brain networks based on 
functional connectivity strength. The main finding is that this approach is able to dem-
onstrate notable differences in functional brain network organization in AD and FTLD 
patient groups. FTLD network changes were often significantly different and in opposite 
direction compared to AD, possibly reflecting a different underlying disease mechanism.

Frontotemporal lobar degeneration 

To the best of our knowledge, this is the first documentation of graph analysis applied 
to FTLD patient data. First, it is important to recognize that network characteristics can 
show change regardless of the fact that no significant changes in underlying functional 
connectivity were found [24]. This is because they should primarily reflect global (chang-
es in) network organization, and not in connectivity strength. Although we found no 
significant changes in the clustering coefficient and characteristic path length in FTLD 
compared to controls, a consistent trend (especially in the higher frequency bands) was 
that these network variables increased, and thus changed in the opposite direction 
compared to the AD group (see figures 1 and 2), leading to highly significant differences 
between FTLD and AD in the lower alpha frequency band. In a spectral analysis study, a 
similar divergence between AD and FTLD qEEG data was reported [25]. 

Clustering coefficient and path length are not the only graph measures sensitive to 
detect network structure. The degree correlation R increased significantly in the lower 
alpha band, which is also a sign of more structure in the network. The fact that only the 
degree correlation reached significance suggests that, in this case, it is a more sensi-
tive measure for capturing network structure differences between FTD and AD. The 
tendency towards a more regular network structure can be interpreted as a deviation 
from the presumably optimally balanced small-world network architecture. Why this 
strong increase in degree correlation is mainly found in the lower alpha band is not easy 
to explain in physiological terms, but involvement of the alpha band in FTD has been 
reported before [26]. 

Since there are not many discriminating EEG measures between FTLD and healthy 
persons, the increased assortativity as measured by the degree correlation (R) in the 
FTLD lower alpha frequency band is intriguing. An assortative network is generally asso-
ciated with a more efficient information processing and a lower vulnerability to network 
damage [8,21,22]. Thus, the higher degree correlation we found in FTD compared to 
healthy controls seems paradoxical. In this regard, it is interesting to note that hierarchy 
in a network has been described as the tendency of hubs to connect to nodes that are 
not otherwise connected to each other [27]. Assortativity and hierarchy might thus be 
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reflected upon as complementary network phenomena. Basset et al. showed in their 
resting-state fMRI study that in the multimodal sub-network of persons with schizophre-
nia, assortativity increased and hierarchy decreased [28]. Our increase in assortativity 
in the FTLD lower alpha band could perhaps also be interpreted as a loss of network 
hierarchy in this regard. 

Since the application of graph analysis to neuroscientific data is still a very new ap-
proach, it is too soon to relate FTD network analysis outcomes to FTD pathophysiology, 
and draw firm conclusions. However, based on recent literature, one could argue as fol-
lows: FTLD is usually characterized by frontotemporal dysfunction and/or atrophy and 
related neuropsychological impairments, like loss of executive functions. Seeley et al. 
recently demonstrated in an fMRI study that specific patterns of atrophy and functional 
network activity converge in several neurodegenerative diseases, including FTD [29]. 
Meunier et al. showed that human functional brain networks appear to be modular, and 
that a large frontal module has extensive connections with other brain areas [30]. In 
FTLD, particularly the fronto-subcortical and temporo-subcortical circuits are affected, 
whereas the parietal and occipital cortices are relatively spared. The frontal and tempo-
ral lobes are responsible for highly complex cognitive functions such as social cognition. 
Clinically, the disorder presents with personality and behavioral changes resulting for 
example in mental rigidity, loss of cognitive flexibility and perseveration. It is conceiv-
able that FTLD leads to a pathologically ordered and rigid network by altering long-
distance network traffic to and from the coordinating frontal areas, but this hypothesis 
has to be explored in future studies. Interestingly, in an fMRI study of ADHD patients 
a similar shift towards a more ordered network type was reported [31], and the same 
seems to be happening in patients with Parkinson’s disease dementia (Olde Dubbelink 
KTE, unpublished results). 

Alzheimer’s Disease 

With decreasing local and global network parameters in AD in the present study, the 
large-scale functional brain network structure deviates towards a more random type. 
The loss of structure as expressed by the lower clustering and path length in the higher 
frequency bands in AD seems to support the notion of AD as a disconnection syndrome, 
together with the well known slowing of brain activity and loss of functional connectiv-
ity in AD [32]. The lower alpha band in particular has been related to global arousal/
attention, and deterioration of this cognitive domain is a common feature of AD. The 
finding that the lower alpha band produces the most striking differences between AD 
and controls could suggest that network changes mainly affect the level of attention/
arousal, which has an effect on other cognitive abilities, and thus contributes to the 
multi-domain, non-specific cognitive impairment as seen in AD. However, as work by 
Klimesch et al. has pointed out, attributing global arousal level as physiological meaning 
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to the alpha band is more reliable when the individual alpha frequency peak (IAF) is 
taken into account [33]. For easier comparison with previous research, fixed bands were 
used in this study. 

A recent magnetoencephalographic AD study showed very similar results: a decreased 
clustering coefficient and characteristic path length in the lower alpha band [18]. At 
first, a shorter path length related to a worse cognitive status seems counter-intuitive. 
However, theoretically, a shorter path length is not necessarily an advantage in a com-
plex network, since it is the overall structure that must be an effective balance between 
local specialization and global integration. Decreases in both clustering coefficient and 
path length mean a more rapid shift towards network randomness. Earlier EEG work 
[12] did find an increase of the characteristic path length in the beta frequency band 
in AD, not in line with the present findings. The explanation for this might be found in 
two methodological developments. First, for the present study (and the MEG study) a 
different algorithm was adopted for determining the characteristic path length, which 
deals better with disconnected nodes in a graph [22]. Another major difference is that 
here, the network measures are normalized by comparing them to random networks 
(see methods section for a more detailed explanation of both issues). For comparison 
with results from other studies, table 2 provides an overview of all AD-related graph 
analysis findings so far. 

Our finding that in AD the R decreases in both alpha bands is in agreement with 
the notion of the AD network losing structure and becoming more random and disor
ganized, as shown by the decrease of γ and λ in AD. All these findings taken together 
seem to support the ‘disconnection syndrome’ hypothesis of AD; deterioration of cog
nition due to loss of functional connectivity and organization. The positive correlation 
of the characteristic path length with MMSE score in the lower alpha band in AD also 
supports this idea. 

Methodological issues 

In this study a few issues regarding methodological limits or possible confounders 
should be addressed. Subjects and EEG data were identical to Pijnenburg et al., and sev
eral study limits have been discussed there [24]. 

Using SMC as a control group is a debatable choice, since people in this group have 
been reported to show differences compared to persons without SMC [34], and have a 
higher chance of having an underlying neurodegenerative disease such as AD or FTLD 
than healthy controls [35], and this might have led to a slight underestimation of group 
differences in our study. However, the chance that SMC subjects have an underlying 
FTLD is very small, and since FTLD and AD subjects showed opposite network changes, 
an underestimation of the differences between SMC and FTLD is not very likely. We have 
the following reasons for choosing SMC as a control group: First, SMC subjects are more 
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representative of the population visiting memory clinics than completely healthy per-
sons. Therefore, when searching for clinically relevant features, a comparison involving 
SMC might be more useful. Second, SMC subjects in our clinic have had a comprehensive 
screening with proven test methods, after which no objective impairments are found. 
The absence of cognitive impairment in this group might be more reliable then in a 
so-called ‘healthy’ control group who have not participated in extensive testing. 

Another concern is medication use, since it can affect recorded brain activity [36,37]. 
However, since the EEG, MMSE and other diagnostic tests had been performed as part of 
the diagnostic process, no pharmacological therapy (like e.g. cholinesterase-inhibitors 
in AD) had yet been initiated. There was an incidental report on the use of pre-diagnostic 
psycho-active medication (benzodiazepine use in two FTD patients and two controls, 
Exelon use in two AD patients), but since these persons did not show outlying SL values, 
network analysis results or clinical characteristics, we are convinced this can not have 
had any notable influence on the results in this study. 

While interpreting our results, readers should be aware of several statistical limitations: 
first, we did not apply corrections for multiple testing. However, since network measure 
data did not show a Gaussian distribution, we used nonparametric statistical testing, 
which makes less a priori assumptions. Also, the most important significant findings we 
report are not near the p = 0.05 level, and almost all the non-significant results in other 
bands showed constant trends in the same direction (see figures 1, 2 and 3), rendering it 
unlikely that significant effects are based on coincidence. Finally, in the non-parametric 
Kruskal-Wallis it is not possible to adjust for covariates such as age, but since our groups 
were age-matched this should not have a large effect. 

A graph theoretical concern deals with the decision to form unweighted graphs based 
on binary connectivity matrices obtained by filtering the original SL values with an 
arbitrarily chosen threshold. A justified question is how to determine the height of this 
threshold, since network results are dependent on this. This question has been addressed 
in [12], where network variables were analyzed as a function of different K (mean degree 
of the network) thresholds. This was also to ensure that the resulting networks would be 
of similar size, and therefore more easily comparable in terms of structure. In a similar 
way we have analyzed network results across a range of K-values [see additional files 1, 
2, 3 and 4]. To avoid disconnected and fully connected, random graphs, K values outside 
this range were not examined. For clarity reasons, we chose one threshold value (K = 5) 
as representative for the whole range. An alternative approach is to convert the original 
SL-based connectivity matrix directly into a ‘weighted’ graph, in which the connections 
between nodes in a graph have variable strengths. This approach is explored in a recent 
MEG-study in Alzheimer patients [18]. 
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Future directions 

Whether functional network changes in neurophysiologic data can be linked to specific 
pathophysiological mechanisms or clinical symptoms, is still unclear at this stage, and 
further systematic study is needed. Graph theory offers a growing amount of techniques 
to describe topological network features like modularity, node centrality (e.g. ‘between-
ness’), or synchronizability [5,6,8,22]. Furthermore, comparison of network findings with 
other neurodegenerative diseases (e.g. Huntington’s disease, PSP) and clinical/patho-
physiological measures (e.g. (f )MRI, CSF, APOE status [38,39] or neuropsychological test-
scores) would be of interest; it is conceivable that different cognitive symptoms arise 
from different types of network disturbance, or that neuronal or synaptic loss in discrete 
regions leads to specific network disturbance. Another relevant question is whether 
loss of neurotransmitter function (e.g. acetylcholine in AD) has notable implications for 
network function, because this could lead to a non-invasive method to monitor or even 
predict cholinergic status and potential medication effectiveness. Cholinergic effects 
have been associated with enhanced functional connectivity [36]. Finally, it would be 
of interest to compare graph analysis results of EEG and MEG recordings in the same 
individuals, and to look at longitudinal measurements, taking into account effects of 
aging and disease course. 

Conclusion 

AD and FTLD patients show dissimilar resting-state functional brain network distur-
bance. Whereas in AD there is a general loss of connectivity and network structure, 
FTLD shows a tendency towards a more ordered network structure. This suggests that 
the approach used in our study, applying graph analysis to EEG data, can be used for 
identifying differences and possibly for gaining more insight in the pathophysiological 
processes underlying these forms of dementia. With this new, integrative perspective 
on large-scale brain function emerging, we may contribute to bridging the gap in our 
understanding between brain structure and function. 

Methods 

Patient diagnosis and recruitment 

Subjects and EEG data were identical to Pijnenburg et al. [24]. Fifteen consecutive 
patients with FTLD according to the criteria of Neary and Snowden [40] were recruited 
from the Alzheimer Centre of the VU University Medical Centre. Twenty patients with 
probable AD according to the NINCDS-ADRDA criteria [41] matched for age and disease 
severity were drawn from the Alzheimer Center clinical database. All patients underwent 
a standard battery of examinations including medical history, inform-ant-based history, 
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physical and neurological examination, screening laboratory tests, psychometric tests, 
MRI, and EEG. All diagnoses were made by consensus in a multidisciplinary team. The 
diagnoses were kept under review and only considered correct if the clinical course over 
a period of at least one year of follow up was consistent with the diagnosis. Twenty-three 
subjects with subjective cognitive complaints served as a control group. They presented 
with cognitive (mostly memory related) complaints at our clinic, but were found to have 
no objective cognitive disorder after thorough testing (the same diagnostic procedure 
as described above). The study was conducted in accordance with regional research 
regulations and conformed to the Declaration of Helsinki. 

EEG Acquisition 

EEGs were recorded using an OSG digital EEG equipment (Brainlab (R)) at the following 
positions of the international 10–20 system: Fp2, Fp1, F8, F7, F4, F3, A2, A1, T4, T3, C4, 
C3, T6, T5, P4, P3, O2, O1, Fz, Cz, Pz with an average reference (including all electrodes 
except Fp2/1 and A2/1). ECG was recorded in a separate channel. Electrode impedance 
was below 5 kOhm. Initial filter settings were: High pass filter = 0.16 Hz, low pass filter = 
70 Hz. Sample frequency was 500 Hz and A-D precision 16 bit. Subjects were seated in a 
slightly reclined chair in a sound attenuated, dimly lit room, and instructed to stay alert 
as much as possible during the whole recording. Further offline post-processing and 
epoch selection was performed by an experienced investigator (CS), who was blinded to 
the diagnosis, and who took care to exclude data with artifacts due to for example (eye) 
movements, drowsiness, or technical issues. For this study, 4 epochs (sample frequency 
500 Hz; 8.19 s) of a no-task eyes-closed condition were selected and band-pass filtered 
for the commonly used frequency bands: delta (0,5–4 Hz), theta (4–8 Hz), lower alpha 
(8–10 Hz), upper alpha (10–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz). All further 
analyses were performed for these bands separately. 

Graph theory 

A short illustration of the basic principles of graph theory used in this study is provided 
in figure 4. 

Graphical representations of the functional brain network are formed using the func-
tional connectivity measure ‘synchronization likelihood’ (SL) as a basis; this multi-step 
procedure is outlined in figure 5. The SL is a general measure of the synchronization 
between two time series, sensitive for linear and nonlinear interdependencies. SL pro-
cedure and results for this group have been published in [24]. A more detailed technical 
description is provided in [42,43]. 

For each frequency band, the SL calculation produces a value of connectivity strength 
for every sensor pair, which results in a matrix showing the connectivity between all pos-
sible sensor pairs (step 2 in figure 5). For this study we used unweighted, binary graphs, 
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which means that only connections with a SL value higher than a (chosen) threshold 
will be realized in the representing network graph. Here, an important methodological 
problem has to be tackled; when forming graphs (step 3 in figure 5), the results might 
be influenced by differences in the mean level of synchronization between groups. Be-
cause the SL is expected to be significantly lower for Alzheimer patients than controls, 
for a given threshold, AD graphs will have fewer connections than the controls graphs. 
Therefore, thresholds are chosen in such a way that the resulting graphs of the different 
groups have an equal mean degree K (see figure 6). Persisting dissimilarities between 
group networks will more likely be due to true differences in network organization. 

Since network-derived measures are not just dependent on network structure, but 
also on network size, between-group comparison should be done on networks of equal 
size. To achieve this, the SL-threshold is chosen in such a way that graphs in both groups 
are guaranteed to have the same average number of edges, so that any remaining net
work differences between the groups reflect differences in graph structure. Because 
the choice of the threshold is arbitrary, a range of different thresholds is examined (see 
Additional files 1, 2, 3 and 4). 

Graphs can be formed by a set of nodes and connections, and can then be character-
ized by various measures (step 4 and 5 in figure 5). The number of connections a node 
possesses is called the degree (k) of that node. The degree (K) of a network is the average 
degree of all nodes. In the following analyses the results of networks with an average 
degree of K = 5 are shown, since they were representative for the findings at other 
threshold levels. Two other core network measures are the clustering coefficient C and 
the characteristic path length L (see also figure 4). The clustering coefficient C of a node 
is the ratio of all existing connections between the ‘neighbors’ of a node (nodes that are 
one step away) and the maximum possible number of edges between the neighbors. 
The mean clustering coefficient is computed for all nodes of the graph and then aver
aged. It is a measure for the tendency of network elements to form local clusters. The 
characteristic path length is the average shortest path connecting any 2 nodes of the 
graph: the length of a path is indicated by the number of connections it contains. The 
characteristic path length L (averaged shortest path length between all node pairs) is an 
emergent property of the graph, which indicates how well its elements are integrated/
interconnected. In the conventional method to calculate path length L, disconnected 
nodes in a network pose a problem. Newman proposed to define L to be the ‘harmonic 
mean’ distance between pairs, or the reciprocal of the average of the reciprocals [22]. 
In this way, calculation of L resembles the ‘global efficiency’ introduced by Latora and 
Marchiori [44]. 
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Figure 4 Graph theory principles. Graphs can represent any kind of network. Dots represent nodes, and 
lines connecting the dots are the connections. The degree (K) of a node is it’s number of connections. 
The clustering coefficient (C), measuring local connectivity of a node, is the likelihood that its neighbors 
are connected. For node C, with neighbours B and D, the clustering coefficient is 1. The path length 
(L), a measure of global connectivity, is the minimum number of connections between two nodes. The 
path length between vertices A and B consists of three edges, indicted by the striped lines. The degree 
correlation (R), a measure of network clustering according to degree, is the ratio of the degrees of two 
neighboring nodes. Figure taken with permission from Stam and Reijneveld. Graph theoretical analysis of 
complex networks in the brain. Nonlinear Biomedical Physics. 2007c; 1: 3.
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Figure 5 From EEG recording to unweighted graph. Multi-step procedure to obtain normalized network-
derived variables. C= clustering coefficient, L= Path length, γ=normalized clustering coefficient, 
λ=normalized path length
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Figure 6  Unweighted graphs of the lower  alpha band (8-10 Hz) for different patient groups and different 
fixed average degrees (K). For the AD, FTLD and SMC groups, the functional connectivity (SL) based 
graphs are shown as headplots for different values of K. Lower K values (higher threshold) result in a 
sparser network. On visual inspection, it is obvious that there are inter-group differences.

To obtain normalized measures, network-derived variables are compared with 50 
control networks of the same size (step 6 and 7 in figure 5). In the resulting connectivity 
matrices (after SL computation), all sensor values were consecutively swapped with a 
different sensor value in the same diagonal halve of the matrix. Since the networks are 
undirected, both diagonals should be symmetrical, and therefore the new, ‘swapped’ 
halve was copied to the other halve of the matrix. This results in an equally-sized net-
work with an identical degree distribution, but a different structure. This same proce-
dure was repeated to obtain 50 random surrogate networks. Gamma (γ) is used for the 
normalized C (C/C-random), and Lambda (λ) is used for the normalized L (L/L-random). 

‘Small-worldness’ (σ) is the ratio of γ and λ, and is used to describe the balance be-
tween the local connectedness and the global integration of a network. When this ratio 
is larger than 1, a network is said to have Small-world properties [9]. 

Another investigated graph property concerning network structure is the degree cor-
relation [8,21,22]. The degree correlation (R) indicates whether the degree of a node is 
influenced by the degree of another node to which it connects. The degree correlation 
is calculated by obtaining the Pearson’s correlation of the degrees of two connected 
nodes, repeating this for every connected node pair, and then averaging these correla-
tions. 
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Correlations between network measures and MMSE score were tested for the AD 
group only, since documentation for the FTD group was incomplete (10 of 15 MMSE 
scores known). 

Statistical evaluation 

For statistical analysis, the SPSS 15.0 package for Windows was used. Since not all 
network-derived variables showed a Gaussian distribution (Kolmogorov-Smirnov test), 
network variable comparison between the three diagnostic groups was performed us-
ing nonparametric statistics (Kruskal-Wallis test followed by Mann Whitney-U tests when 
appropriate). Correlations between network measures and MMSE score were calculated 
with Spear-man’s correlations. Separate analyses were performed for each of the six 
frequency bands. A significance level of α = 0.05 was used. 
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Additional material 

Additional file 1 
Threshold analysis in the lower alpha frequency band (8–10 Hz). Graph analysis results 

of unweighted networks as presented in this paper are dependent on an arbitrarily cho-
sen threshold (in our study K, mean degree of the network). This supplement, including 
3 figures, shows that the reported results (K = 5) are representative for a broad range of 
K thresholds. 

[http://www.biomedcentral.com/content/supplementary/14712202-10-101-S1.doc] 

Additional file 2 
Clustering coefficient. Group comparison of the normalized clustering coefficient (Cp/

Cp-s or γ) between conditions for different mean network degrees K (* p < 0.05 ** p < 
0.01 compared to SMC). 

[http://www.biomedcentral.com/content/supplementary/14712202-10-101-S2.tiff ] 

Additional file 3 
Path Length. Group comparison of the normalized characteristic path length (Lp/Lp-s 

or λ) between conditions for different mean network degrees K (* p < 0.05 ** p < 0.01 
compared to SMC). 

[http://www.biomedcentral.com/content/supplementary/14712202-10-101-S3.tiff ] 

Additional file 4 
Degree correlation. Group comparison of the degree correlation (R) for different mean 

network degrees K (* p < 0.05 ** p < 0.01 compared to SMC). 
[http://www.biomedcentral.com/content/supplementary/14712202-10-101-S4.tiff ]
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Abstract

In this study we examined changes in the large-scale structure of resting-state brain 
networks in patients with Alzheimer’s disease (AD) compared to non-demented con-
trols, using concepts from graph theory. MEG was recorded in 18 AD patients and 18 
non-demented control subjects in a no-task, eyes-closed condition. For the main fre-
quency bands, synchronization between all pairs of MEG channels was assessed using 
a phase lag index (PLI, a synchronization measure insensitive to volume conduction). 
PLI-weighted connectivity networks were calculated, and characterized by a mean 
clustering coefficient and path length. AD patients showed a decrease of mean PLI in 
the lower alpha and beta band. In the lower alpha band, the clustering coefficient and 
path length were both decreased in AD patients. Network changes in the lower alpha 
band were better explained by a ‘Targeted attack’ model than by a ‘Random failure’ 
model. Thus, AD patients display a loss of resting-state functional connectivity in lower 
alpha and beta bands even when a measure insensitive to volume conduction effects is 
used. Moreover, the large-scale structure of lower alpha band functional networks in AD 
is more random. The modelling results suggest that highly connected neural network 
‘hubs’ may be especially at risk in AD.
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Introduction

A central question in cognitive neuroscience is how cognitive functions depend upon 
coordinated and integrated activity of specialized, widely distributed brain regions. 
There is strong support that a network perspective on the brain is required in order 
to understand higher brain functioning (Le van Quyen, 2003; Varela et al., 2001). How 
do functional interactions between brain regions take place, and how can this be mea-
sured and assessed? For answering these questions an important idea is the so-called 
functional connectivity that refers to linear or nonlinear statistical interdependencies 
between time series of physiological signals recorded from different brain regions 
(Aertsen et al., 1989; Fingelkurts et al., 2005; Friston, 2001; Lee et al., 2003). Functional 
connectivity is assumed to reflect functional interactions between the underlying brain 
regions. 

The concept of functional connectivity has become very important in the study of 
brain mechanisms underlying disturbed cognition in Alzheimer’s disease (AD), the most 
frequent cause of dementia in the western population (van der Flier and Scheltens, 
2005). AD is characterized by degeneration of neurons starting in the hippocampus, later 
spreading to the temporal and parietal cortex, and finally involving most cortical areas. 
Loss of neurons, involvement of white matter as well as disturbed synaptic transmission, 
e.g. due to decreased levels of acetylcholine (Osipova et al., 2003), account for abnormal 
functional interactions between cortical regions. It has even been suggested that AD can 
be viewed as a disconnection syndrome (Delbeuck et al., 2003). Support for this concept 
comes from a number of electro- and magnetoencephalographic (EEG and MEG) stud-
ies using conventional coherence as a measure of functional connectivity (Adler et al., 
2003; Berendse et al., 2000; Besthorn et al., 1994; Dunkin et al., 1994; Hogan et al., 2003; 
Jelic et al., 1996; Jiang 2005; Knott et al., 2000; Koenig et al., 2005; Leuchter et al., 1992; 
Locatelli et al., 1998; Pogarell et al., 2005; Stevens et al., 2001). In most of these studies a 
consistent decrease of coherence in the alpha and beta band was reported, whereas re-
sults for other bands were more variable. Abnormalities of functional connectivity have 
also been demonstrated with nonlinear synchronization methods (Babiloni et al., 2004; 
Jeong et al., 2001; Pijnenburg et al., 2004; Stam et al., 2002, 2006). While these studies in 
general support the hypothesis of a disconnection syndrome in AD, two problems need 
further attention: (i) assessment of functional connectivity with EEG and MEG can be 
biased by volume conduction, which may yield spurious correlations between nearby 
sensors and hence render interpretation unreliable; (ii) connectivity studies in AD are 
generally very descriptive and lack a more robust framework to discriminate between 
normal and abnormal networks in the brain.
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Nearby EEG electrodes or MEG sensors are likely to pick up activity of identical sources, 
resulting in strong correlations between recorded signals that reflect simple volume 
conduction rather than true functional connectivity (Nunez et al., 1997, Srinivasan et al., 
2007). Two approaches have been submitted to overcome this problem. First, one may 
study interdependencies between time series of reconstructed sources rather than sig-
nals of recording electrodes or sensors (Amor et al., 2005; David et al., 2002; Gross et al., 
2001; Hadjipapas et al., 2005; Lehmann et al., 2006; Tass et al., 2003). While this approach 
has certainly the added benefit of dealing with interactions between anatomically 
well-defined brain regions, a major pitfall is the absence of a unique definition of the 
corresponding source space. Different assumptions may lead to different source models 
and, hence, different results. However, to date there is no reliable way to decide which 
model is the proper choice. Second, one may look for time series analysis techniques 
that extract interdependencies between signals which are not or at least unlikely due to 
volume conduction. This measure therefore reflects true interactions. An early attempt in 
this direction was summarized in a study by Nunez and colleagues (1997) who proposed 
to subtract a baseline random coherence from the measured coherence in order to ob-
tain a reduced, task-related coherence, which is less influenced by volume conduction 
effects. More recently Nolte and colleagues (2004) proposed to use the imaginary part of 
the (complex-valued) coherency between two signals. Indeed volume conduction can-
not give rise to imaginary coherency, but the magnitude of the imaginary part does not 
appear to be a proper value to quantify synchronization, since it mixes information on 
coupling strength and coupling delay. As an alternative, a so-called phase lag index (PLI) 
was introduced, which reflects the consistency with which one signal is phase leading 
or lagging with respect to another signal (Stam et al., 2007b). The PLI was shown to be 
less affected by volume conduction than more traditional measures like coherence, and 
at the same token, it was rather sensitive to true changes in synchronization. We will 
exploit this capacity to address possible changes in functional connectivity due to AD. 
We see an advantage of PLI compared to ‘reduced coherency’, since although this last 
method might represent an improvement over traditional coherence, it does rely on 
several a priori assumptions such as stationarity and linearity, and is still sensitive to 
signal amplitude. PLI is sensitive to non-linear data and can handle non-stationary data, 
at least to some degree. 

 The theoretical framework for understanding large-scale networks is given by ‘modern 
network theory’ (for a review see: Boccaletti et al., 2006), a new branch in graph theory, 
in which networks are represented by a set of nodes (vertices) and connections (edges). 
See figure 1 for an explanation of the basic principles of graph theory used in this study.
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Figure 1. Representation of a network as a graph. Black dots represent the nodes or vertices, and the lines 
connecting the dots the connections or edges. The left panel shows an unweighted graph. The shortest 
path length (L) between vertices A and B consists of three edges, indicted by the striped lines. The 
clustering coefficient (C) of a vertex is the likelihood that its neighbours are connected. For vertex C, with 
neighbours B and D, the clustering coefficient is 1. When weights are assigned to the edges, the graph is 
weighted (right panel). Here the weights of the edges are indicated by the thickness of the lines. Figure 
taken with permission from Stam and Reijneveld. Graph theoretical analysis of complex networks in the brain. 
Nonlinear Biomedical Physics. 2007c; 1: 3.

In recent years, graph theory has been introduced to the study of anatomical and 
functional networks in the central nervous system (Bassett and Bullmore, 2006; Stam 
and Reijneveld, 2007c). Graph theory provides models of complex networks in the brain, 
and allows one to better understand the relations between network structure and the 
processes taking place on those networks. It can also provide a concept of an ‘optimal’ 
network (for example in terms of balancing segregation and integration, performance 
and cost), and offers scenarios of how complex networks might develop, and how they 
might respond to different types of damage. Watts and Strogatz (1998) introduced so-
called ‘small-world’networks, which have a balance between local specialization and 
global integration that is optimal for information processing, and they showed that 
several real-life networks possess small-world features. Small-world networks have a 
relatively high amount of so-called ‘local clustering’, meaning that nodes are often con-
nected to their neighbours, combined with relatively short ‘path lengths’, which means 
that from any node it takes just a few steps to reach any other node in the network. 
There is now accumulating evidence that different types of structural brain networks 
display a ‘small-world’ type network organization characterized by a combination of 
high local clustering as well as short path lengths (He et al., 2006; Hilgetag et al., 2000; 
Iturria-Medina et al. 2008; Watts and Strogatz, 1998). A similar approach has also been 
used to study networks of functional connectivity. In several fMRI studies of healthy 
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subjects, small-world patterns were found (Achard et al., 2006; Salvador et al., 2005; 
Supekar et al., 2008). The presence of small-world type functional networks in healthy 
subjects was also confirmed in numerous EEG and MEG studies (Bassett et al., 2006; Smit 
et al., 2007; Stam, 2004; Stam et al., 2007a). However, only a few studies have yet shown 
that brain pathology may interfere with the normal small-world architecture. According 
to Bartolomei et al. (2006) brain networks in patients with low-grade glioma’s are more 
random compared to healthy controls. A similar change in network structure was re-
ported in patients with schizophrenia and in patients with epilepsy during the interictal 
state (Micheloyannis et al., 2006; Ponten et al., 2007; Rubinov et al., 2007). In a recent 
pilot study on AD a loss of the normal small-world architecture was reported (Stam et 
al., 2006). In view of these findings one might speculate that brain disease in general 
gives rise to a deviation from the normal, optimal small-world configuration of brain 
networks. It is not clear however how such network changes come about.

As mentioned above two questions were addressed in the present study: (i) is it pos-
sible to confirm previous EEG and MEG reports of decreased resting state functional 
connectivity in AD using a method that is less affected by volume conduction? (ii) can 
graph analysis reveal abnormalities in the large-scale topology of functional connectiv-
ity networks in AD, and can such network changes be explained by modelling?

Materials and methods

Patients and controls

Subjects and recordings were identical to Stam et al. (2006). The study involved 18 
patients (mean age 72.1 years, S.D. 5.6; 11 males; mean MMSE 19.2, range: 13-25) with a 
diagnosis of probable AD according to the NINCDS-ADRDA criteria (McKhann et al., 1984) 
and 18 healthy control subjects (mean age 69.1 years, S.D. 6.8; 7 males; mean MMSE 
29, range: 27-30), mostly spouses of the patients. Patients and controls were recruited 
from the Alzheimer Centre of the VU University Medical Centre. Subjects were assessed 
according to a clinical protocol, which involved history taking, physical and neurologi-
cal examination, blood tests, MMSE (Folstein et al., 1975) neuropsychological work up 
(administration of a battery of neuropsychological tests), MRI of the brain according to 
a standard protocol and routine EEG. The final diagnosis was based upon a consensus 
meeting in which all the available clinical data and results of the ancillary investigations 
were considered. As reported in Stam et al. (2006), 6 patients used cholinesterase in-
hibitors, which was found to have no influence on functional connectivity. In the control 
and patient group both benzodiazepine and anti-depressive drug use was reported by 
one person.  The study was approved by the Local Research Ethics Committee and all 
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patients or their caregivers had given written informed consent. Since subjects were 
included years ago, medical files were checked again recently to verify initial diagnosis; 
no notable changes (besides disease progression) were discovered. 

MEG recording

Magnetic fields were recorded while subjects were seated inside a magnetically shielded 
room (Vacuumschmelze GmbH, Hanau, Germany) using a 151-channel whole-head 
MEG system (CTF Systems Inc., Port Coquitlam, BC, Canada). Average distance between 
neighbouring sensors in this system was 3.1 cm. A third-order software gradient (Vrba 
et al., 1999) was used after online band-pass filtering between 0.25 and 125 Hz. Sample 
frequency was 625 Hz. For technical reasons two channels had to be omitted yielding 
149 channels or sensors for analyses. Fields were measured during a no-task, eyes-closed 
condition. At the beginning and at the ending of the recording the head position rela-
tive to the coordinate system of the helmet was recorded by leading small alternating 
currents through three head position coils attached to the left and right pre-auricular 
points and the nasion on the subject’s head. Head position changes during the record-
ing up to approximately 1.5 cm were accepted. During the MEG recording, persons were 
instructed to sit comfortably, close their eyes and reduce eye movements, but remain 
awake as much as possible. During the recordings, the investigator and MEG technician 
checked the signal on-line for visual signs of drowsiness (e.g. slow eye movement activ-
ity) and observed the patient using a video monitor. 

As a filtering process, offline frequency analysis is performed on the raw data, using a 
Fourier transformation. In the obtained frequency spectrum all frequencies outside the 
studied bands are set to zero, and using an inverse Fourier transformation the filtered 
signal is then obtained, with preservation of all phase information of the original data.  
For the subsequent off-line processing the recordings were converted to ASCII files and 
down-sampled to 312.5 Hz. For each subject care was taken to find and select exactly 
three artifact-free epochs of 4096 samples (13,083 s) by two of the investigators (BFJ 
and IM). MEG registrations were converted to datafiles with a coded filename before 
epoch selection, so the investigators were blind to the subjects’ diagnosis during this 
process. Typical artifacts were due to (eye) movements, drowsiness or technical issues. 
Visual inspection and selection of epochs was realized with the DIGEEGXP software (CS). 
Epochs were band-pass filtered for the commonly used frequency bands: delta (0,5-4 
Hz), theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-13 Hz), beta (13-30 Hz) and 
gamma (30-45 Hz), and all further analyses were performed for these bands separately.
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Phase Lag Index

The phase lag index (PLI) is a measure of the asymmetry of the distribution of phase dif-
ferences between two signals. It reflects the consistency with which one signal is phase 
leading or lagging with respect to another signal (Stam et al., 2007b). The PLI performs 
at least as well as the Synchronization Likelihood (SL) (Montez et al. 2006) in detecting 
true changes in synchronization but it is much less affected by the influence of common 
sources. A more detailed explanation is offered in the supplementary material to this 
article.

Beside a global, mean PLI calculation a more regional approach was used. For this 
analysis MEG sensors were grouped into five regions (frontal, temporal, central, parietal, 
and occipital) for each hemisphere, and average PLI for all sensors within a region (lo-
cal) or between two regions (long distance) were computed following the procedure 
described in Stam et al. (2006).

Graph analysis

In principle, networks can be represented by graphs, which are sets of vertices and cor-
responding sets of edges (Boccaletti et al., 2006; Stam and Reijneveld, 2007c). One may 
say that an edge or connection either exists or not but one may also assign a certain 
weight to an edge that reflects the importance or strength of the relation between two 
vertices. While the first one yields unweighted graphs in that edges are either 0 or 1, 
the latter produces so-called weighted graphs. To define the corresponding weights a 
matrix of correlations between signals recorded at different electrodes is generally suit-
able. We denote the matrix’ coefficients as wij, i.e. they connect vertex i with vertex j and 
specified their values using the afore-explained PLI. That is we defined a network of 149 
vertices (matching the 149 available MEG channels) and used the matrix of PLI values 
between all pairs of MEG channels as edge weights.

Graphs can be characterized by various measures. Two fundamental ones are the clus-
tering coefficient, which denotes the likelihood that neighbours of a vertex will also be 
connected to each other, and the average path length, i.e. the average number of edges 
of the shortest path between pairs of vertices (see figure 1). 

Well ordered networks are strongly clustered and show large path lengths. In contrast, 
random networks are weakly clustered with small path lengths. Neither ordered nor ran-
dom networks are good candidates for real networks like the human brain. Hence, Watts 
and Strogatz (1998) suggested a new type of networks, so-called small-world networks, 
which have both large clustering coefficients as well as small path lengths. Interestingly, 
these networks can be designed to be scale-free by having very short path lengths and 
a power law degree distribution (Barabási and Albert, 1999). Both small-world and scale-
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free networks are optimal in the sense that they allow efficient information processing 
with a minimal number of connections. By now it has been shown that many types of 
network ranging from metabolic and genetic to social are either small-world or scale-
free (Amaral and Ottino., 2004; Boccaletti et al., 2006).

The clustering index Ci of a vertex i generally represents the likelihood that other 
vertices j that are connected to the vertex i will also be connected to each other. This 
notion can be adopted for use with weighted graphs in various ways (Boccaletti et al., 
2006). Here we propose a simple definition, closely related to the proposal of Onnela 
et al. (2005), which only requires symmetry (wij = wji) and that 0 ≤ wij ≤ 1 holds. Indeed, 
both conditions are readily fulfilled when using PLI as weight definition. The (weighted) 
clustering index of vertex i is then defined as

	

As a filtering process, offline frequency analysis is performed on the

raw data, using a Fourier transformation. In the obtained frequency

spectrum all frequencies outside the studied bands are set to zero,

and using an inverse Fourier transformation the filtered signal is then

obtained, with preservation of all phase information of the original

data. For the subsequent off-line processing the recordings were con-

verted to ASCII files and down-sampled to 312.5Hz. For each subject

care was taken to find and select exactly three artifact-free epochs

of 4096 samples (13.083 s) by two of the investigators (BFJ and IM).

MEG registrations were converted to datafiles with a coded filename

before epoch selection, so the investigators were blind to the subjects’

diagnosis during this process. Typical artifacts were due to (eye) move-

ments, drowsiness or technical issues. Visual inspection and selection

of epochs was realized with the DIGEEGXP software (CS). Epochs

were band-pass filtered for the commonly used frequency bands: delta

(0.5–4Hz), theta (4–8Hz), lower alpha (8–10Hz), upper alpha

(10–13Hz), beta (13–30Hz) and gamma (30–45Hz), and all further

analyses were performed for these bands separately.

Phase lag index
The PLI is a measure of the asymmetry of the distribution of phase

differences between two signals. It reflects the consistency with which

one signal is phase leading or lagging with respect to another signal

(Stam et al., 2007b). The PLI performs at least as well as the synchro-

nization likelihood (SL) (Montez et al., 2006) in detecting true changes

in synchronization but it is much less affected by the influence

of common sources. A more detailed explanation is offered in the

Supplementary material to this article.

Beside a global, mean PLI calculation a more regional approach

was used. For this analysis MEG sensors were grouped into five

regions (frontal, temporal, central, parietal and occipital) for each

hemisphere, and average PLI for all sensors within a region (local)

or between two regions (long distance) were computed following

the procedure described in Stam et al. (2006).

Graph analysis
In principle, networks can be represented by graphs, which are sets

of vertices and corresponding sets of edges (Boccaletti et al., 2006;

Stam and Reijneveld, 2007c). One may say that an edge or connection

either exists or not but one may also assign a certain weight to an

edge that reflects the importance or strength of the relation between

two vertices. While the first one yields unweighted graphs in that

edges have values of either 0 or 1, the latter produces so-called

weighted graphs. To define the corresponding weights a matrix

of correlations between signals recorded at different electrodes is

generally suitable. We denote the matrix’ coefficients as wij, i.e.

they connect vertex i with vertex j and specified their values using

the afore-explained PLI. That is we defined a network of 149 vertices

(matching the 149 available MEG channels) and used the matrix of

PLI values between all pairs of MEG channels as edge weights.

Graphs can be characterized by various measures. Two fundamental

ones are the clustering coefficient, which denotes the likelihood

that neighbours of a vertex will also be connected to each other,

and the average path length, i.e. the average number of edges of

the shortest path between pairs of vertices (Fig. 1).

Well ordered networks are strongly clustered and show large path

lengths. In contrast, random networks are weakly clustered with

small path lengths. Neither ordered nor random networks are good

candidates for real networks like the human brain. Hence, Watts

and Strogatz (1998) suggested a new type of networks, so-called

small-world networks, which have both large clustering coefficients

as well as small path lengths. Interestingly, these networks can be

designed to be scale-free by having very short path lengths and a

power law degree distribution (Barabási and Albert, 1999). Both

small-world and scale-free networks are optimal in the sense that

they allow efficient information processing with a minimal number

of connections. By now it has been shown that many types of network

ranging from metabolic and genetic to social are either small-world or

scale-free (Amaral and Ottino, 2004; Boccaletti et al., 2006).

The clustering index Ci of a vertex i generally represents the like-

lihood that other vertices j that are connected to the vertex i will

also be connected to each other. This notion can be adopted for use

with weighted graphs in various ways (Boccaletti et al., 2006). Here

we propose a simple definition, closely related to the proposal of

Onnela et al. (2005), which only requires symmetry (wij=wji) and

that 04wij4 1 holds. Indeed, both conditions are readily fulfilled

when using PLI as weight definition. The (weighted) clustering index

of vertex i is then defined as

Ci ¼

P
k6¼i

P
l6¼i
l6¼k

wikwilwkl

P
k6¼i

P
l6¼i
l 6¼k

wikwil
ð1Þ

Notice that in all sums in (1) terms with k= i, l= i or k= l are skipped.

In the special case in which wij equals either 0 or 1, this definition

is equivalent to the classical definition for unweighted graphs (Watts

and Strogatz, 1998). For isolated vertices, i.e. vertices that do not have

any connections, all weights wij vanish, and the clustering index is

defined as Ci=0 (Newman, 2003). The mean clustering coefficient

of the entire network can be determined via (1) as

Cw ¼ 1

N

XN
i¼1

Ci ð2Þ

Watts and Strogatz (1998) also defined the path length of unweighted

graphs. We extend this definition to weighted graphs building on

the approach of Latora and Marchiori (2001). In detail, we define

the length of an edge as the inverse of the aforementioned edge

weight, i.e. Lij=1/wij if wij 6¼ 0, and Lij=+1 if wij=0; recall that wij

is positive because we use the PLI as edge weight. The length of

a weighted path between two vertices is then defined as the sum of

the lengths of the edges of this path. The shortest path lij between

two vertices i and j is the path between i and j with the shortest

length. Analogously to definition (2) the average weighted path

length of the entire graph is computed as

Lw ¼ 1

1=N N � 1ð Þð Þ
PN
i¼1

PN
j 6¼i

1=Lij
� � ð3Þ

Notice that instead of the arithmetic mean we here employed the

harmonic mean (Newman, 2003), so that we can handle infinite

path lengths between disconnected edges, i.e. 1/1 ! 0.

By definition, both values of Cw and Lw depend on edge weights

and network structure but also on network size. In order to obtain

measures that are independent of network size, the mean edge weight

Ĉw ¼ Cw= C
ðsurrogateÞ
w

� �
and the mean path length L̂w ¼ Lw= L

ðsurrogateÞ
w

� �
were computed, in which CðsurrogateÞ

w

� �
and LðsurrogateÞw

� �
denote weighted

clustering coefficient and path length averaged over an ensemble of

50 surrogate random networks that were derived from the original

networks by randomly reshuffling the edge weights. The steps
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Notice that in all sums in (1) terms with k = i, l = i, or k = l are skipped. In the special case 
in which wij equals either 0 or 1, this definition is equivalent to the classical definition 
for unweighted graphs (Watts and Strogatz, 1998). For isolated vertices, i.e. vertices that 
do not have any connections, all weights wij vanish, and the clustering index is defined 
as Ci=0 (Newman, 2003). The mean clustering coefficient of the entire network can be 
determined via (1) as

	

As a filtering process, offline frequency analysis is performed on the

raw data, using a Fourier transformation. In the obtained frequency

spectrum all frequencies outside the studied bands are set to zero,

and using an inverse Fourier transformation the filtered signal is then

obtained, with preservation of all phase information of the original

data. For the subsequent off-line processing the recordings were con-

verted to ASCII files and down-sampled to 312.5Hz. For each subject

care was taken to find and select exactly three artifact-free epochs

of 4096 samples (13.083 s) by two of the investigators (BFJ and IM).

MEG registrations were converted to datafiles with a coded filename

before epoch selection, so the investigators were blind to the subjects’

diagnosis during this process. Typical artifacts were due to (eye) move-

ments, drowsiness or technical issues. Visual inspection and selection

of epochs was realized with the DIGEEGXP software (CS). Epochs

were band-pass filtered for the commonly used frequency bands: delta

(0.5–4Hz), theta (4–8Hz), lower alpha (8–10Hz), upper alpha

(10–13Hz), beta (13–30Hz) and gamma (30–45Hz), and all further

analyses were performed for these bands separately.

Phase lag index
The PLI is a measure of the asymmetry of the distribution of phase

differences between two signals. It reflects the consistency with which

one signal is phase leading or lagging with respect to another signal

(Stam et al., 2007b). The PLI performs at least as well as the synchro-

nization likelihood (SL) (Montez et al., 2006) in detecting true changes

in synchronization but it is much less affected by the influence

of common sources. A more detailed explanation is offered in the

Supplementary material to this article.

Beside a global, mean PLI calculation a more regional approach

was used. For this analysis MEG sensors were grouped into five

regions (frontal, temporal, central, parietal and occipital) for each

hemisphere, and average PLI for all sensors within a region (local)

or between two regions (long distance) were computed following

the procedure described in Stam et al. (2006).

Graph analysis
In principle, networks can be represented by graphs, which are sets

of vertices and corresponding sets of edges (Boccaletti et al., 2006;

Stam and Reijneveld, 2007c). One may say that an edge or connection

either exists or not but one may also assign a certain weight to an

edge that reflects the importance or strength of the relation between

two vertices. While the first one yields unweighted graphs in that

edges have values of either 0 or 1, the latter produces so-called

weighted graphs. To define the corresponding weights a matrix

of correlations between signals recorded at different electrodes is

generally suitable. We denote the matrix’ coefficients as wij, i.e.

they connect vertex i with vertex j and specified their values using

the afore-explained PLI. That is we defined a network of 149 vertices

(matching the 149 available MEG channels) and used the matrix of

PLI values between all pairs of MEG channels as edge weights.

Graphs can be characterized by various measures. Two fundamental

ones are the clustering coefficient, which denotes the likelihood

that neighbours of a vertex will also be connected to each other,

and the average path length, i.e. the average number of edges of

the shortest path between pairs of vertices (Fig. 1).

Well ordered networks are strongly clustered and show large path

lengths. In contrast, random networks are weakly clustered with

small path lengths. Neither ordered nor random networks are good

candidates for real networks like the human brain. Hence, Watts

and Strogatz (1998) suggested a new type of networks, so-called

small-world networks, which have both large clustering coefficients

as well as small path lengths. Interestingly, these networks can be

designed to be scale-free by having very short path lengths and a

power law degree distribution (Barabási and Albert, 1999). Both

small-world and scale-free networks are optimal in the sense that

they allow efficient information processing with a minimal number

of connections. By now it has been shown that many types of network

ranging from metabolic and genetic to social are either small-world or

scale-free (Amaral and Ottino, 2004; Boccaletti et al., 2006).

The clustering index Ci of a vertex i generally represents the like-

lihood that other vertices j that are connected to the vertex i will

also be connected to each other. This notion can be adopted for use

with weighted graphs in various ways (Boccaletti et al., 2006). Here

we propose a simple definition, closely related to the proposal of

Onnela et al. (2005), which only requires symmetry (wij=wji) and

that 04wij4 1 holds. Indeed, both conditions are readily fulfilled

when using PLI as weight definition. The (weighted) clustering index

of vertex i is then defined as

Ci ¼

P
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P
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wikwilwkl
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wikwil
ð1Þ

Notice that in all sums in (1) terms with k= i, l= i or k= l are skipped.

In the special case in which wij equals either 0 or 1, this definition

is equivalent to the classical definition for unweighted graphs (Watts

and Strogatz, 1998). For isolated vertices, i.e. vertices that do not have

any connections, all weights wij vanish, and the clustering index is

defined as Ci=0 (Newman, 2003). The mean clustering coefficient

of the entire network can be determined via (1) as

Cw ¼ 1

N

XN
i¼1

Ci ð2Þ

Watts and Strogatz (1998) also defined the path length of unweighted

graphs. We extend this definition to weighted graphs building on

the approach of Latora and Marchiori (2001). In detail, we define

the length of an edge as the inverse of the aforementioned edge

weight, i.e. Lij=1/wij if wij 6¼ 0, and Lij=+1 if wij=0; recall that wij

is positive because we use the PLI as edge weight. The length of

a weighted path between two vertices is then defined as the sum of

the lengths of the edges of this path. The shortest path lij between

two vertices i and j is the path between i and j with the shortest

length. Analogously to definition (2) the average weighted path

length of the entire graph is computed as

Lw ¼ 1

1=N N � 1ð Þð Þ
PN
i¼1

PN
j 6¼i

1=Lij
� � ð3Þ

Notice that instead of the arithmetic mean we here employed the

harmonic mean (Newman, 2003), so that we can handle infinite

path lengths between disconnected edges, i.e. 1/1 ! 0.

By definition, both values of Cw and Lw depend on edge weights

and network structure but also on network size. In order to obtain

measures that are independent of network size, the mean edge weight

Ĉw ¼ Cw= C
ðsurrogateÞ
w

� �
and the mean path length L̂w ¼ Lw= L

ðsurrogateÞ
w

� �
were computed, in which CðsurrogateÞ

w

� �
and LðsurrogateÞw

� �
denote weighted

clustering coefficient and path length averaged over an ensemble of

50 surrogate random networks that were derived from the original

networks by randomly reshuffling the edge weights. The steps
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Watts and Strogatz (1998) also defined the path length of unweighted graph. We 
extend this definition to weighted graphs building on the approach of Latora and Mar-
chiori (2001). In detail we define the length of an edge as the inverse of the aforemen-
tioned edge weight, i.e. Lij = 1/wij if wij ≠ 0, and Lij = +∞ if wij = 0; recall that wij is positive 
because we use the PLI as edge weight. The length of a weighted path between two 
vertices is then defined as the sum of the lengths of the edges of this path. The shortest 
path lij between two vertices i and j is the path between i and j with the shortest length. 
Analogously to definition (2) the average weighted path length of the entire graph is 
computed as

	

As a filtering process, offline frequency analysis is performed on the

raw data, using a Fourier transformation. In the obtained frequency

spectrum all frequencies outside the studied bands are set to zero,

and using an inverse Fourier transformation the filtered signal is then

obtained, with preservation of all phase information of the original

data. For the subsequent off-line processing the recordings were con-

verted to ASCII files and down-sampled to 312.5Hz. For each subject

care was taken to find and select exactly three artifact-free epochs

of 4096 samples (13.083 s) by two of the investigators (BFJ and IM).

MEG registrations were converted to datafiles with a coded filename

before epoch selection, so the investigators were blind to the subjects’

diagnosis during this process. Typical artifacts were due to (eye) move-

ments, drowsiness or technical issues. Visual inspection and selection

of epochs was realized with the DIGEEGXP software (CS). Epochs

were band-pass filtered for the commonly used frequency bands: delta

(0.5–4Hz), theta (4–8Hz), lower alpha (8–10Hz), upper alpha

(10–13Hz), beta (13–30Hz) and gamma (30–45Hz), and all further

analyses were performed for these bands separately.

Phase lag index
The PLI is a measure of the asymmetry of the distribution of phase

differences between two signals. It reflects the consistency with which

one signal is phase leading or lagging with respect to another signal

(Stam et al., 2007b). The PLI performs at least as well as the synchro-

nization likelihood (SL) (Montez et al., 2006) in detecting true changes

in synchronization but it is much less affected by the influence

of common sources. A more detailed explanation is offered in the

Supplementary material to this article.

Beside a global, mean PLI calculation a more regional approach

was used. For this analysis MEG sensors were grouped into five

regions (frontal, temporal, central, parietal and occipital) for each

hemisphere, and average PLI for all sensors within a region (local)

or between two regions (long distance) were computed following

the procedure described in Stam et al. (2006).

Graph analysis
In principle, networks can be represented by graphs, which are sets

of vertices and corresponding sets of edges (Boccaletti et al., 2006;

Stam and Reijneveld, 2007c). One may say that an edge or connection

either exists or not but one may also assign a certain weight to an

edge that reflects the importance or strength of the relation between

two vertices. While the first one yields unweighted graphs in that

edges have values of either 0 or 1, the latter produces so-called

weighted graphs. To define the corresponding weights a matrix

of correlations between signals recorded at different electrodes is

generally suitable. We denote the matrix’ coefficients as wij, i.e.

they connect vertex i with vertex j and specified their values using

the afore-explained PLI. That is we defined a network of 149 vertices

(matching the 149 available MEG channels) and used the matrix of

PLI values between all pairs of MEG channels as edge weights.

Graphs can be characterized by various measures. Two fundamental

ones are the clustering coefficient, which denotes the likelihood

that neighbours of a vertex will also be connected to each other,

and the average path length, i.e. the average number of edges of

the shortest path between pairs of vertices (Fig. 1).

Well ordered networks are strongly clustered and show large path

lengths. In contrast, random networks are weakly clustered with

small path lengths. Neither ordered nor random networks are good

candidates for real networks like the human brain. Hence, Watts

and Strogatz (1998) suggested a new type of networks, so-called

small-world networks, which have both large clustering coefficients

as well as small path lengths. Interestingly, these networks can be

designed to be scale-free by having very short path lengths and a

power law degree distribution (Barabási and Albert, 1999). Both

small-world and scale-free networks are optimal in the sense that

they allow efficient information processing with a minimal number

of connections. By now it has been shown that many types of network

ranging from metabolic and genetic to social are either small-world or

scale-free (Amaral and Ottino, 2004; Boccaletti et al., 2006).

The clustering index Ci of a vertex i generally represents the like-

lihood that other vertices j that are connected to the vertex i will

also be connected to each other. This notion can be adopted for use

with weighted graphs in various ways (Boccaletti et al., 2006). Here

we propose a simple definition, closely related to the proposal of

Onnela et al. (2005), which only requires symmetry (wij=wji) and

that 04wij4 1 holds. Indeed, both conditions are readily fulfilled

when using PLI as weight definition. The (weighted) clustering index

of vertex i is then defined as
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Notice that in all sums in (1) terms with k= i, l= i or k= l are skipped.

In the special case in which wij equals either 0 or 1, this definition

is equivalent to the classical definition for unweighted graphs (Watts

and Strogatz, 1998). For isolated vertices, i.e. vertices that do not have

any connections, all weights wij vanish, and the clustering index is

defined as Ci=0 (Newman, 2003). The mean clustering coefficient

of the entire network can be determined via (1) as

Cw ¼ 1

N

XN
i¼1

Ci ð2Þ

Watts and Strogatz (1998) also defined the path length of unweighted

graphs. We extend this definition to weighted graphs building on

the approach of Latora and Marchiori (2001). In detail, we define

the length of an edge as the inverse of the aforementioned edge

weight, i.e. Lij=1/wij if wij 6¼ 0, and Lij=+1 if wij=0; recall that wij

is positive because we use the PLI as edge weight. The length of

a weighted path between two vertices is then defined as the sum of

the lengths of the edges of this path. The shortest path lij between

two vertices i and j is the path between i and j with the shortest

length. Analogously to definition (2) the average weighted path

length of the entire graph is computed as

Lw ¼ 1

1=N N � 1ð Þð Þ
PN
i¼1

PN
j 6¼i

1=Lij
� � ð3Þ

Notice that instead of the arithmetic mean we here employed the

harmonic mean (Newman, 2003), so that we can handle infinite

path lengths between disconnected edges, i.e. 1/1 ! 0.

By definition, both values of Cw and Lw depend on edge weights

and network structure but also on network size. In order to obtain

measures that are independent of network size, the mean edge weight

Ĉw ¼ Cw= C
ðsurrogateÞ
w

� �
and the mean path length L̂w ¼ Lw= L

ðsurrogateÞ
w

� �
were computed, in which CðsurrogateÞ

w

� �
and LðsurrogateÞw

� �
denote weighted

clustering coefficient and path length averaged over an ensemble of

50 surrogate random networks that were derived from the original

networks by randomly reshuffling the edge weights. The steps
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Notice that instead of the arithmetic mean we here employed the harmonic mean 
(see Newman, 2003), so that we can handle infinite path lengths between disconnected 
edges, i.e. 1/∞ ≥ 0.

  By definition, both values of Cw and Lw depend on edge weights and network structure 
but also on network size. In order to obtain measures that are independent of network 

size, the mean edge weight 
(surrogate)ˆ

w w wC C C=
 and the mean path length 

(surrogate)ˆ
w w wL L L=

 were computed, in which 
(surrogate)
wC

 and 
(surrogate)
wL

 denote 
weighted clustering coefficient and path length averaged over an ensemble of 50 
surrogate random networks that were derived from the original networks by randomly 
reshuffling the edge weights. The steps involved in weighted graph analysis of the MEG 
data are illustrated schematically in Fig. 2.

Modelling network damage

To understand the general mechanisms underlying network changes in Alzheimer 
patients two models were compared, adopted from Albert and Barabási (2002). The first 
model (Random failure) assumes that network changes are due to a random decrease in 
strength of edges. The second model (Targeted attack) assumes that edges connecting 
high degree vertices (‘hubs’) will be more vulnerable to attack than edges connecting 
low degree vertices. The models were implemented by taking the PLI data of a control 
subject, selecting an edge at random, and then decrease its weight by a factor 2 with 
probability 1 (random failure model), or a probability that depended on the degree 
of both vertices connected by the edge (Targeted attack model). This procedure was 
repeated until the average PLI of the network was decreased to the average PLI of the 
Alzheimer group. Data of all control subjects were treated in a similar way. This resulted 
in two new data sets, one for each model, which were subjected to the same graph 
analysis as the original control and Alzheimer data sets.

Statistical analysis

Statistical analysis was done with SPSS for MS-Windows (version 15). Group differences 
in respectively gender distribution and PLI and were tested with ANOVA and two-tailed 
t-tests for independent samples (not assuming equal variance). Since graph measures 
showed a non-Gaussian distribution, group differences were tested with Mann-Whitney 
U-tests for independent samples. The effect of and medication use on PLI and network 
measures was assessed using Kruskal-Wallis tests. Associations between cognitive status 
(MMSE) and PLI or network-derived measures were assessed with Spearman’s bivariate 
correlation test. A significance level of α < 0.05 was used.
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Figure 2. Schematic illustration of the steps involved in weighted graph analysis of MEG recordings. At 
each of the MEG sensors, illustrated in panel A, MEG signals are recorded. Epochs of MEG data are filtered, 
as shown in panel B, and correlations between all pairs of channels are determined with the phase lag 
index. This results in a weighted graph, with the strength of the synchronization between pairs of sensors 
indicated in color (blue low, red high PLI), as shown in panel C. From each graph the weighted clustering 
coefficient Cw and the weighted path length Lw are computed. Also, from each graph, and ensemble of 
random graphs is generated by randomly shuffling the connection weights (panel D). The Cw and Lw of 

each of the random graphs is determined and the mean values for the ensemble, 

(surrogate)
wC

 and 
(surrogate)
wL

, are determined. Finally, the ratios 
ˆ

wC  and 
ˆ

wL  are computed (panel E).

Figure 3. Damage modelling procedure. The mean PLI of a control subject network is lowered by 
randomly weakening edges in the network, until it reaches the same value as in a AD patient network. 
The effect of this damage is then examined by comparing the network characteristics of the damaged 
network to the AD patient network characteristics. AD=Alzheimer’s disease, PLI=phase lag index, 
RF=random failure, TA=Targeted attack, Cw=mean weighted clustering coefficient, Lw=mean weighted 
path length.
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Results

Subject characteristics

No effect of gender distribution in the groups on PLI values and network measures was 
found. In the AD patient group, 6 persons used cholinesterase inhibitors (rivastigmine or 
galantamine). However, use of this medication did not produce a significant effect on PLI 
or network measure outcomes. This was also the case for the use of other psychoactive 
drugs in both the patient and control group (see methods-subjects subsection above).

Phase lag index

The average networks for AD patients and controls computed with PLI in six different 
frequency bands are shown in Fig. 4. 

Figure 4. Average weighted graphs of AD patients and controls in six frequency bands. The value of the 
PLI for all individual pairs of MEG sensors is indicated in color (blue: low PLI; red: high PLI).

Visual inspection already suggested differences between the two groups, especially in 
the 8-10 Hz and 13-30 Hz bands. Group differences in mean PLI for each frequency band 
were tested with two-tailed t-tests for independent samples. The results are shown in 
Fig. 5. 
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Figure 5. Mean PLI averaged over all pairs of MEG sensors for AD patients and controls in six frequency 
bands. Error bars are standard deviations. The mean PLI was significantly lower in AD patients compared 
to controls in the lower alpha band (two-tailed t-text, p < 0.022) and the beta band (two-tailed t-test, p = 
0.036).

The mean PLI was significantly lower in the AD group in the 8-10 Hz band (p = 0.022) and 
in the 13-30 Hz band (p = 0.036). A non-significant trend in the same direction was found 
in the 10-13 Hz band (p = 0.112). No clear differences could be observed in other bands. 
By way of illustration, for the two frequency bands with a significant mean difference in 
PLI more detailed, regional results are shown in Fig. 6.

Figure 6. Schematic illustration of significant differences in long distance (indicated by arrows) and short 
distance (indicated by filled squares) PLI in the 8-10 Hz and 13-30 Hz band. AD patients had lower left 
sided fronto-temporal, fronto-parietal, temporo-occipital and parieto-occipital PLI in the 8-10 Hz band. 
Local left frontal and temporal, and right parietal PLI were also decreased in AD patients (panel A). For the 
13-30 Hz band, AD patients had lower inter hemispheric frontal, right fronto-parietal and bilateral frontal 
PLI (panel B).
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For the 8-10 Hz band, AD patients had significantly lower left fronto-parietal (p = 0.026), 
fronto-temporal (p = 0.007), parieto-occipital (p = 0.025) and temporo-occipital (p = 
0.009) PLI. Local left frontal (p = 0.034), temporal (p = 0.011) and right parietal (p = 0.021) 
PLI were also decreased in the AD group. For the 13-30 Hz band, AD patients showed a 
decrease in interhemispheric frontal (p = 0.032), right fronto-parietal (p = 0.041) and 
local right (p = 0.020) and left (p = 0.046) frontal PLI.

Network analysis

Results of the weighted graph analysis are shown in Table 1. 

Table 1. Results of weighted graph analysis for AD patients and controls in six frequency bands. Values 
are medians, with range printed between parentheses. Cw : mean weighted clustering coefficient. Lw : 

mean weighted path length. 
ˆ

wC : mean normalized average weighted clustering coefficient (see method 

section). 
ˆ

wL : mean normalized average weighted path length. Significant differences between AD and 
controls with non parametric testing (Mann-Whitney U-test, p<0.05) are given in bold.

Cw Lw
ˆ

wC ˆ
wL

AD control AD control AD control AD Control

0.5-4 Hz 0.12
(0.10-0.32)

0.12
(0.10-0.17)

4.05
(1.69-4.40)

3.92
(2.89-4.59)

1.04
(1.03-1.12)

1.04
(1.02-1.11)

1.09
(1.06-1.33)

1.08
(1.05-1.34)

4-8 Hz 0.11
(0.09-0.20)

0.10
(0.09-0.15)

4.23
(2.48-4.99)

4.44
(3.22-5.01)

1.05
(1.03-1.17)

1.04
(1.03-1.13)

1.14
(1.04-1.41)

1.15
(1.05-1.43)

8-10 Hz 0.15 
(0.12-0.21)

0.17
(0.13-0.29)

3.27 
(2.25-3.76)

2.69
(1.80-3.73)

1.04 
(1.02-1.12)

1.07
(1.04-1.13)

1.08 
(1.05-1.32)

1.19
(1.07-1.30)

10-13 Hz 0.12
(0.11-0.14)

0.13
(0.11-0.22)

3.83
(3.28-4.36)

3.72
(2.36-4.30)

1.04
(1.03-1.10)

1.04
(1.03-1.21)

1.10
(1.05-1.35)

1.12
(1.04-1.45)

13-30 Hz 0.06
(0.05-0.06)

0.06
(0.05-0.08)

7.97
(6.44-9.24)

7.61
(5.18-9.35)

1.04
(1.02-1.07)

1.04
(1.03-1.16)

1.11
(1.05-1.50)

1.12
(1.04-1.50)

30-45 Hz 0.05
(0.05-0.09)

0.05
(0.05-0.08)

8.70
(5.17-9.07)

8.54
(6.06-9.14)

1.02
(1.02-1.07)

1.02
(1.02-1.07)

1.09
(1.06-1.33)

1.04
(1.02-1.30)

The non-parametric Mann-Whitney U-test for independent samples revealed that Cw was 
lower in AD subjects in the 8-10 Hz band (U = 89.5; p = 0.022), but not in the 13-30 Hz band 
(U = 107.0; p = 0.081). Lw was higher in AD subjects in the 8-10 Hz band (U = 82.0; p = 0.011). 

In the 8-10 Hz band AD patients had a lower 
ˆ

wC  (U = 76.0; p = 0.006) and a lower 
ˆ

wL  (U 
= 86.0; p = 0.016).

Modelling of network changes

Modelling with the Random failure and the Targeted attack model was applied to the 
data of the 8-10 Hz band since this band showed the most consistent differences in graph 
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measures between the two groups. The average PLI graphs for AD patients, controls and 
both models are shown in Fig. 7. On visual inspection, both models look quite similar to 
the average network in the AD group. Please note that, by definition, the average PLI of 
both models is the same as the average PLI of the AD data. 

Figure 7. Comparison of real and modelled networks in the 8-10 Hz band. Top left: average PLI for 
the Alzheimer patients. Top right: average PLI for the control subjects. Bottom left: average PLI after 
application of the ‘targeted attack’ model to control data. Bottom right: average PLI after application of 
the ‘random failure’ model to control data.

Further analysis of the model data compared to the real data is shown in Fig. 8. For the 

Random failure model the 
ˆ

wC  was not different from the control data, and significantly 

higher than 
ˆ

wC of the AD group (Mann-Whitney U test, U=76.5; p = 0.007). In contrast, 

ˆ
wC of the Targeted attack model was not significantly different from the AD group, but 

significantly lower than 
ˆ

wC of the control group (U= 87.0; p = 0.018). The weighted path 

length 
ˆ

wL  showed a decreasing trend going from controls to Random failure, Targeted 

failure and controls (Fig. 8, right panel). 
ˆ

wL  of both models did not differ significantly 
from control data. 
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Correlation with MMSE
No significant correlations between MMSE and PLI or network measures were found in 
the AD patient group. When correlation with MMSE was analyzed for all subjects (AD and 
control) put together in one group, we found significant effects between MMSE and mean 

PLI in the beta band (Spearman’s r = 0.570, p = 0.001) and between MMSE and 
ˆ

wC  in the 
lower alpha band (Spearman’s r = 0.475, p = 0.008).

Figure 8. Comparison of normalized weighted clustering coefficient (left panel) and path length (right 
panel) for Alzheimer patients, targeted attack model, random failure model and controls in the 8-10 Hz 
band. Boxplots show median, interquartile range and extremes. AD = Alzheimer’s Disease

Figure 9. In the left panel the correlation of mean PLI in the lower alpha band and MMSE is shown 
(Spearman’s r = 0.570, p = 0.001), in the right panel the correlation of the mean clustering coefficient with 
MMSE in the beta band (Spearman’s r = 0.475, p = 0.008). AD and controls group were combined for this 
analysis. AD = Alzheimer’s disease.
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Discussion

The present study showed that resting-state functional connectivity of MEG is decreased 
in AD patients in the lower alpha and beta bands using a recently developed measure, 
the PLI, that appears invariant against volume conduction. This finding supports the 
concept of AD as a disconnection syndrome. Moreover, changes in functional connec-
tivity in AD patients did not involve all brain regions to the same extent, suggesting 
a heterogeneous disruption of overall network structure. This idea was confirmed by 
graph analysis of the functional connectivity data, which revealed lower normalized 
clustering coefficients and path lengths in the AD group in the lower alpha band. This 
type of change suggests that brain networks in AD patients are closer to random net-
works than those of non demented control subjects. The modelling results suggest that 
this change was brought about by a preferential decrease of connections between high 
degree nodes (‘hubs’), rather than a non-specific decrease of connection strength.

Volume conduction

A decrease of resting state functional connectivity in AD patients in the alpha and often 
also in the beta band has been reported in many EEG and MEG studies (Adler et al., 
2003; Besthorn et al., 1994; Dunkin et al., 1994; Hogan et al., 2003; Jelic et al., 1996; Jiang 
2005; Koenig et al., 2005; Knott et al., 2000; Leuchter et al., 1992; Locatelli et al., 1998; 
Pogarell et al., 2005; Stevens et al., 2001). However, a major point of criticism is that such 
studies were done on the raw EEG and MEG time series. It is well known that estimates 
of statistical interdependencies in EEG and MEG may be biased by the effects of volume 
conduction and, in the case of EEG, by the influence of the reference electrode (Guevara 
et al., 2005; Nunez et al., 1997). More specifically, nearby EEG electrodes or MEG sensors 
are likely to pick up activity of the same source, and thereby to display spuriously high 
correlations between their time series. This problem can be solved to a large degree by 
acknowledging that spurious couplings due to volume conduction or active reference 
electrodes cannot give rise to phase delays between channels. The PLI is only sensitive 
to phase synchronization between two channels when one is consistently leading or 
lagging in phase with respect to the other. That is, with PLI any coupling with a phase 
difference which centres around 0 mod are discounted. Put differently, our finding of a 
significant decrease of PLI in the lower alpha and the beta band cannot be explained by 
volume conduction but strongly supports the idea that resting-state functional connec-
tivity is decreased in AD. Since the PLI results are largely in line with the previous studies 
we can conclude that the influence of volume conduction and reference electrode in 
these studies may have been smaller than has sometimes been suggested. However, a 
detailed comparison of our study with a previous study, in which the same data were 
analyzed with several linear and nonlinear measures, does display a few differences 
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(Stam et al., 2006). For example, if we compare Fig. 6 of the present study with Figs. 3, 4, 
and 7 of Stam et al. (2006), one finds that the PLI in the beta band only showed decreases 
in the AD group, whereas coherence and Synchronization Likelihood (SL) also showed 
centro-parietal increases. A possible explanation could be that the increases in connec-
tivity reported for SL and coherence might be influenced by volume conduction, while 
the decreases seems to be confirmed by the PLI and may reflect true loss of connectivity, 
but this should be subject to further study.

Resting state

Functional connectivity can be determined in relation to tasks as well as during a resting 
state. More recently there has been a growing interest in resting state functional con-
nectivity because it appears that in particular memory-related brain networks are con-
sistently activated during this state (Damoiseaux et al., 2006; Gusnard and Raichle, 2001; 
Laufs et al., 2003). Moreover, resting state functional connectivity has a strong genetic 
component, and shows characteristic changes in various psychiatric and neurological 
disorders (Posthuma et al., 2005; Stam, 2005, 2006).

Network analysis

In the present study Cw was decreased in the lower alpha and beta band and Lw was in-
creased in the lower alpha band in the AD group. It should be stressed that these changes 
in Cw and Lw are likely to be influenced by changes in the PLI. A lower mean level of PLI will 
decrease the estimate of Cw, irrespective of changes in network structure. Similarly, a lower 
PLI will give rise to longer weighted path lengths. These results should be compared to Fig. 
4 in Stam et al, (2007a). Here Cw and Lw were compared between controls and AD patients 
for the same threshold, showing a non significant trend to a lower Cw and a significant 
increase of Lw in the AD group. By using the same threshold for both groups, differences 
in mean PLI could have influenced the results. Thus changes in Cw and Lw in both studies 
are consistent, but cannot be taken as ‘pure’ measures of changes in network structure as 
they are likely to be influenced by the lower mean level of connectivity in the AD group. 

  In contrast, the normalized coefficients 
ˆ

wC  and 
ˆ

wL  are corrected for differences in mean 
PLI between subjects, since each network is compared to its own random counterpart. 

The most important result is thus the decrease of 
ˆ

wC  and 
ˆ

wL  in the AD group in the 
lower alpha band. Within the framework of the Watts and Strogatz model this suggests 
that network architecture in AD patients is significantly closer to that of random networks. 
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However, 
ˆ

wC  was very close to one in both groups, and much lower than reported in 

other studies, where 
ˆ

wC  was usually around 2 (Achard et al., 2006; Bassett et al., 2006; 
Salvador et al., 2005; Stam, 2004; Stam et al., 2007a). It is possible that correlations between 
nearby sensors due to volume conduction could have produced spuriously high estimates 
of Cw in previous EEG and MEG studies. 

Damage modelling

Modelling was used to investigate whether the observed network changes in AD in the 
8-10 Hz band could be explained by a general mechanism. In the literature on complex 
networks generally two types of network damage are considered: random failure, where 
edges and / or vertices are lost randomly, and targeted attack, where damage mainly af-
fects high degree, critical vertices and / or edges (section 3 in Boccaletti et al, 2006, for a 
more practical application see Kaiser et al., 2007). In our study the Targeted attack model 
performed better than the random error model in explaining the network changes in AD, 
in particular with respect to the clustering coefficient. While both models lowered the 
mean PLI to the level observed in the AD group, only the Targeted attack model produced 
a clustering coefficient as low as in the patients, whereas the Random failure model did 
not change the clustering coefficient at all. These results suggest that the disease process 
in AD may specifically affect association fibres connecting brain areas that are highly con-
nected to the rest of the brain, that is: higher order association areas. The distribution of 
amyloid plaques in AD is in agreement with this suggestion (Nordberg, 2007).

Several studies have investigated the nature of network changes in different types of 
brain pathology. In the case of brain tumours, schizophrenia and interictal recordings of 
patients with epilepsy pathological networks were characterized by a smaller Cw and a 
smaller Lw (Bartolomei et al., 2006; Micheloyannis et al., 2006; Ponten et al., 2007; Rubinov 
et al., 2007). Considering the model of Watts and Strogatz, where the edges of a fully 
ordered network with degree K (number of edges per vertex) are rewired randomly with 
a certain probability P, a lower Cw and Lw would correspond with a higher value of the 
rewiring probability, and a more random network. The findings in the AD group in the 
present study seem to fit in the same scheme: decrease of both Cw and Lw, and a more 
random network in the patient group. Moreover, the values were close to (although 
significantly different from) 1, which indicates that the difference between real and 
random networks was very small. The one finding that does not fit in this pattern is the 
increase in beta band path length for AD patients reported in the previous pilot study 
(Stam et al., 2007a). This result was obtained only for some values of degree K, with K 
identical for both groups (Fig. 5 in Stam et al., 2007a). One explanation could be that in 
the EEG pilot study disconnected points (which occur already for values of K = 3) were 
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excluded from the computation of the path length, whereas in the present study they 
were included (see formula in methods section). This is an essential difference, excluding 
or including disconnected points may decrease or increase the estimated path length 
considerably. The lower alpha band, which was the only band to show clear changes 
in normalized clustering coefficient and path length in the current MEG study, was not 
investigated in the EEG study. Therefore, the evidence in favour of more random net-
work topology in AD seems to be stronger, and in line with changes in other disorders. 
To be able to find a disease-specific ‘network change profile’ probably requires further 
exploration of this network approach and its relation to clinical features of AD. Possibly 
‘network randomization’ may be a final common pathway for different types of brain 
damage, resulting from loss of neurons and connections as well a random outgrowth 
of new connections. A related concept of increased entropy relating to ageing and 
Alzheimer’s disease has recently been formulated by Drachmann: “Increasing entropy, 
manifest through a complex network of interacting age related changes, is seen as the 
fundamental driving cause of neural and cognitive decline in the elderly, as well as the 
overriding etiologic principle in further transition to sporadic AD” (Drachmann, 2006). It 
would be of considerable interest to study how different types of treatment will interfere 
with this process of network randomization, and how the network parameters relate to 
disease severity and cognitive performance.
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Abstract

The relation between pathology and cognitive dysfunction in dementia is still poorly 
understood, although disturbed communication between different brain regions is 
almost certainly involved. In this study we combine magneto-encephalography (MEG) 
and network analysis to investigate the role of functional sub-networks (modules) in the 
brain with regard to cognitive failure in Alzheimer’s disease. Whole-head resting-state 
(MEG) was performed in 18 Alzheimer patients (age 67±9, 6 females, MMSE 23±5) and 
18 healthy controls (age 66±9, 11 females, MMSE 29±1). We constructed functional brain 
networks based on interregional synchronization measurements, and performed graph 
theoretical analysis with a focus on modular organization. The overall modular strength 
and the number of modules changed significantly in Alzheimer patients. The parietal 
cortex was the most highly connected network area, but showed the strongest intra-
modular losses. Nonetheless, weakening of intermodular connectivity was even more 
outspoken, and more strongly related to cognitive impairment. The results of this study 
demonstrate that particularly the loss of communication between different functional 
brain regions reflects cognitive decline in Alzheimer’s disease. These findings imply the 
relevance of regarding dementia as a functional network disorder.
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Introduction

A theoretical framework to interpret the rapidly increasing amount of experimental data 
describing the complex organization of the human brain is highly desired. In recent 
years, graph theory has emerged as a promising candidate for this purpose  (Rubinov 
and Sporns, 2010; Stam, 2010; Bullmore et al., 2009). Graph theory investigates the prin-
ciples of network architecture, and the relation between network structure and function  
(Watts and Strogatz, 1998; Barabasi and Albert, 1999; Newman, 2010; Sporns, 2010). The 
application of graph theoretical analysis to neuroscientific data has revealed important 
organizational brain features such as an efficient ‘small-world’ architecture (combining 
good global and local connectivity) and the existence of highly connected network 
regions, called hubs  (Eguiluz et al., 2005; Achard et al., 2006; Salvador et al., 2005; Stam 
et al., 2009; van den Heuvel and Hulshoff Pol, 2010; He et al., 2008). Changes in brain 
network topology have been related to normal cognitive development and aging as 
well as to a wide range of brain diseases, implying a close relation between connectivity 
and cognitive status  (Achard and Bullmore, 2007; Stam and Reijneveld, 2007; Bullmore 
and Sporns, 2009). 

In the most prevalent type of dementia, Alzheimer’s disease (AD), cognitive functions 
that depend strongly on communication between different brain areas are particularly 
disturbed, and it has therefore been characterized as a ‘disconnection syndrome’  (Ge-
schwind, 1965; Delbeuck et al., 2003). Graph theoretical studies of AD patient data have 
consistently revealed perturbations of brain network organization  (He et al., 2008; He 
et al., 2009; Supekar et al., 2008; de Haan et al., 2009; Stam and Reijneveld, 2007; Stam et 
al., 2009). Interestingly, highly connected hub regions (e.g. the posterior cingulate gyrus 
and precuneus) seem most susceptible to AD pathology, which consists of amyloid de-
position, hypometabolism and atrophy (Buckner et al., 2005; Celone et al., 2006; Greicius 
et al., 2004; Sperling et al., 2009). What causes this hub vulnerability in AD is unclear, 
but a more detailed description and understanding of hubs, or network clustering in 
general, could provide further clues. 

A related network characteristic dealing with clustering is modularity, which expresses 
the extent to which networks can be decomposed into smaller functional sub-groups 
or modules  (Guimerà and Amaral, 2005; Boccaletti et al., 2006; Newman and Girvan, 
2004; Newman, 2006). Network nodes belonging to the same module have a higher 
level of inter-connectivity than with the rest of the network. In the brain, a high level 
of structural or functional connectivity among a group of regions implies a collective 
function or goal (Hilgetag et al., 2000; Varela et al., 2001; Salvador et al., 2005). Therefore, 
large-scale modular organization might be an appropriate level to examine cognitive 
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processing and its impairment in brain disease. In this MEG study, we focus on functional 
modularity: the description of distinct sub-networks with intensive dynamical interac-
tion, as expressed by levels of neuronal synchronization.

Theoretically, there are several advantages of a modular brain network structure. 
It offers an elegant solution for balancing the opposing demands that are placed on 
many dynamical systems: a high level of local specialization, while maintaining tight 
global integration  (Sporns et al., 2004). In a modular network, hubs can have different 
roles; connector hubs form bridges between different modules, while provincial hubs 
are central nodes within modules. Graph theoretical measures that quantify inter- and 
intra-modular connectivity and are able to classify (hub) nodes accordingly have been 
developed (Guimerá and Amaral, 2005) and incorporated in the present study.

Using graph theoretical methods, several previous studies have demonstrated the 
presence of modular organization in the brain (Leise, 1990; Hilgetag et al., 2000; Kaiser 
et al., 2007; Chen et al., 2008; Hagmann et al., 2008). Moreover, modularity seems to 
develop during infancy and to degrade with age, suggesting a relation with cognitive 
abilities  (Meunier et al., 2009; Fair et al., 2009; Fan et al., 2010; van den Heuvel and 
Hulshoff Pol, 2010; Schwarz et al., 2008; Ferrarini et al., 2009). Consequently, the progres-
sive impairment of specific cognitive domains in AD might well be reflected by changes 
in functional modularity. 

In this study we explore functional modularity in resting-state MEG data of AD patients 
and healthy controls using a well-known graph theoretical modularity algorithm 
(Newman and Girvan, 2004). Our main aim is to examine whether and to what extent 
modular organization of spontaneous brain activity changes in AD, and if these changes 
are related to cognitive performance. Our hypothesis is that cognitive impairment in 
AD will be primarily reflected by impaired communication between functional modules, 
based on the notions that cognition requires intensive distributed processing and that 
vulnerable hub regions in AD are mainly located in association cortex areas (that inte-
grate information from multiple modalities). In network terms, we expect AD to be a 
‘connector hub disease’.

Materials and methods

Patients and controls

The study involved 18 patients with a diagnosis of probable AD according to the 
NINCDS-ADRDA criteria  (McKhann et al., 1984) and 18 healthy controls who were all 
recruited from the Alzheimer Center of the VU University Medical Center. Controls were 
often spouses of the patients. AD patients were assessed according to a standard clinical 
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protocol, which involved history taking, physical and neurological examination, an in-
terview with a spouse or close family member, blood tests, MRI of the brain according to 
a standard protocol, routine EEG, and a neuropsychological assessment. The diagnosis 
was made in a consensus meeting in which all the available clinical data were consid-
ered by a multidisciplinary team. Cognitive tests of special interest for this study with AD 
patients were the delayed recall of the Dutch version of the Rey auditory verbal learning 
task (RAVLT)  (memory), Visual Association Test (VAT, effortless learning) and category 
fluency (executive functions and language)  (Rey, 1970),  (Lindeboom et al., 2002),  (Lu-
teijn and Ploeg,). The VAT is an adequate test to examine learning ability in dementia. 
Level of education was classified according to the system of Verhage ranging from 1 to 7 
(low to highly educated) (Verhage and F., 1965). Controls were screened by a neurologist 
and underwent the same neuropsychological tests as the patients. Exclusion criteria for 
this study were active psychiatric or neurologic disease, or a Mini Mental State Examina-
tion (MMSE) score below 16. The Local Research Ethics Committee approved the study 
and all participants gave written informed consent. Main subject characteristics are 
summarized in table 1. AD patients were mild to moderately demented (MMSE 23±1). 
In both groups a few individuals were on psychoactive drugs like benzodiazepines or 
cholinesterase inhibitors (in the AD group). 

Table 1. Subject characteristics

Control Alzheimer

Group 18 18

Age 66 (±9) 67 (±9) p = 0.82

Gender
 (M/F)

7/11 12/6 p = 0.16

MMSE 29 (±1) 23 (±1) p < 0.001

Education   (Verhage 
score)

5 (±1) 5 (±1) p = 0.89

M=males, F=females, MMSE=mini mental state examination score.

From MEG to module

The description of modular structure in oscillatory brain dynamics requires a combina-
tion of mathematical techniques. The multi-step procedure is outlined in figure 1; first 
(1), the recording of eyes-closed resting-state MEG data, then (2) the calculation of the 
strength of synchronization between different brain areas (functional connectivity), (3) 
the construction of undirected, weighted network graphs from these results, and finally 
(4) the graph analysis, focussing on modularity measures, both on a global and a local 
scale. The subsequent steps are discussed in more detail in the following paragraphs.
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Figure 1. The multi-step procedure from recording MEG data to modularity analysis.

1.	 MEG recording
Magnetic fields were recorded while subjects were seated inside a magnetically shielded 
room (Vacuumschmelze GmbH, Hanau, Germany) using a 151-channel whole-head 
MEG system (CTF Systems Inc., Port Coquitlam, BC, Canada). Average distance between 
neighbouring sensors in this system was 3.1 cm. A third-order software gradient  (61) was 
used after online band-pass filtering between 0.25 and 125 Hz. Sample frequency was 
625 Hz. For technical reasons two channels had to be omitted, yielding 149 channels or 
sensors for analysis. Fields were measured during a task-free, eyes-closed condition. At 
the beginning and ending of the recording the head position relative to the coordinate 
system of the helmet was recorded by leading small alternating currents through three 
head position coils attached to the left and right pre-auricular points and the nasion on 
the subject’s head. Head position changes during the recording up to approximately 1.5 
cm were accepted. During the MEG recording, patients were instructed to close their 
eyes, stay awake, and to reduce eye movements. For the subsequent off-line processing 
the recordings were converted to ASCII files. For each subject care was taken to select 
four artifact-free epochs of 4096 samples by two of the investigators (WDH and CS), 
who were blinded to the diagnosis. Typical artifacts were due to (eye) movements, swal-
lowing, dental prosthetics, or drowsiness.  All further functional connectivity and graph 
theoretical analysis were performed with in-house developed software (BrainWave 
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version 0.8.68, CS. Latest version freely available on home.kpn.nl/stam7883/brainwave.
html).

2.	 Functional connectivity analysis
Correlations between all pair-wise combinations of MEG channels were computed with 
the Synchronization Likelihood (SL). Mathematical details can be found in previous work 
(Stam and Dijk, 2002),  (Montez et al., 2006); here we give a brief description. The SL is a 
general measure of the correlation or synchronization between 2 time series, which is 
sensitive to linear as well as nonlinear interdependencies. The basic principle of the SL 
is to divide each time series into a series of ‘patterns’ (roughly, brief pieces of time series 
containing a few cycles of the dominant frequency) and to search for a recurrence of 
these patterns. The SL is then the probability that pattern recurrence in time series X 
coincides in time with pattern recurrence in time series Y. The end result of computing 
the SL for all pair-wise combinations of channels is a square matrix (with 149 rows and 
columns, equal to the number of MEG channels), where each entry contains the result-
ing SL value of the sensor pair. This matrix is called the adjacency or connectivity matrix.

3.	 Graph construction
Graphs are constructed using all information in the connectivity matrix. This results in 
fully connected, weighted (the connection strength between a sensor pair is their SL 
value), undirected (connections between nodes have no direction) 149 node-networks. 
For this study, we focussed on graph measures describing community structure in 
networks. The node strength (s), within-module degree and participation coefficient 
(see section below) were computed for all individual nodes. By averaging nodal values, 
global or regional values can be obtained for these measures. Since in our weighted 
graphs the strength of a node is determined by the sum of all its SL values, the node 
strength distribution of the entire network reveals the regions that are most strongly 
connected (hub regions). 

4.	 Modularity analysis
To describe modularity in the whole-brain network we used a modification of the ap-
proach by Guimera and Nunes Amaral  (Guimerà and Amaral, 2005; Newman and Girvan, 
2004), adapted for weighted networks and identical to Stam et al.  (Stam, 2010): 
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Here, Cf is final cost and Ci is initial cost. The temperature T was 1
initially, and was lowered once every 100 steps as follows:
Tnew=0.995 Told. In total, the simulated annealing algorithm was run
for 106 steps. The partition with the strongest modular organization
was identified separately for each epoch of every person for all the
different frequency bands, and subjected to further graph analysis.

Once the modular organization in a network has been determined,
the topological role of individual nodes can be described in greater
detail (Guimerà and Amaral, 2005): nodes can be mainly involved in
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where m is the number of modules, ls the sum of the weights of all links in module s, L is 
the total sum of all weights in the network, ds is the sum of the strength of all vertices in 
module s. In short, the relation between intra- and intermodular connections determines 
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the strength of each module. For any given network partition, this measure describes the 
strength of the total modularity by summing the relative strength of all the modules in the 
network. A strongly modular network has modularity value close to 1, and in a network 
without modular organization it will approach 0. Finding the optimal modular organization 
in a network is a computationally intensive problem. One of the most effective methods to 
date is simulated annealing  (Guimerà et al., 2004; Guimerà and Amaral, 2005). This method 
was used to find the optimal way to divide the network into modules: initially, each of the 
N nodes was randomly assigned to one of m possible clusters, where m was taken as the 
square of N. At each step, one of the nodes was chosen at random, and assigned a different 
randomly chosen module number from the interval [1,N]. Modularity was calculated 
before and after this. The cost C was defined as 
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Here, Cf is final cost and Ci is initial cost. The temperature T was 1 initially, and was low-
ered once every 100 steps as follows: Tnew = 0.995 Told. In total, the simulated annealing 
algorithm was run for 106 steps. The partition with the strongest modular organization 
was identified separately for each epoch of every person for all the different frequency 
bands, and subjected to further graph analysis.

Once the modular organization in a network has been determined, the topological 
role of individual nodes can be described in greater detail  (Guimerà and Amaral, 2005): 
nodes can be mainly involved in communication with other nodes in the same module, 
but can also interact with other modules. This aspect is quantified by two properties: 
the within-module degree (Zi), and the participation coefficient (PC). The within-module 
degree measures the connectivity of the node within the module compared to the 
other nodes in the same module, and thus describes the relative importance within the 
module. The weighted within module degree can be defined as follows: 
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and all nodes inmodulem. Thewithinmodule degree and the participa-
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node in the modular network structure (Fig. 2):

o Provincial hubs: relatively many links within ownmodule (high Zi,
low PC)

o Connector hubs: relatively many links to other modules (low Zi,
high PC)

In this study, node identities were determined by their relative
values compared to the other nodes. To be able to describe group differ-
ences in these measures, global and regional mean Zi and PC values
were examined. For the latter analysis, nodes were assigned to five cor-
tical regions (frontal, temporal, central, parietal, and occipital).

Statistical analysis

Statistical analysis was done with SPSS for Mac (version 18.0). All
analyses were performed for each epoch separately for all different
frequency bands, and prior to group comparison the four epochs per
person were averaged. Since functional connectivity and graph

measures showedGaussian distributions, group differenceswere tested
with independent sample t-tests. Regional Zi and PC analysis was per-
formed with an ANOVA for repeated measures, using group as
between-subject factor and cortical region as within-subject factor
(Greenhouse–Geisser corrected). Correlations of graph measures with
neuropsychological test scores in AD were assessed with Pearson's
test. A significance level of αb0.05 was used for all tests.

Results

Modularity — descriptive results

To get a first impression of modular organization, individual network
modules were visualized. Comparing several different resting-state MEG
epochs of the same person, modular structure was generally consistent.
Often, three or four strongly clustered frontal or parietal modules were
found, along with several weaker temporal and occipital ones. Modules
were usually localized clusters of adjacent cortical areas, but also showed
long-distance fragments. Inter-hemispheric modules were a frequent
finding, especially bi-temporal. To demonstrate a representative example
of group differences in modular organization of these functional
networks, module head plots are shown for two matched subjects in
the beta frequency band (Fig. 3).

The differences in distributions between the two persons are appar-
ent; for example, while the healthy person shows strong parietal mod-
ules, they are absent in the AD patient. In the healthy control a long-
distance, inter-hemispheric module with frontal, temporal, parietal
and occipital nodes is visible.

Modularity — global results

Global modularity (Q) results are depicted in Fig. 4 (upper panel).
Overall, modularity values were around 0.2, which is an indication of
a weak modular network organization. Highest modularity was found
in the beta band of the control group, while gamma band modularity
was much lower in both groups. In patients with AD, delta and theta
bands showed an increase, and beta and gamma bands showed a strong
decrease in modularity. The number of modules (Nm) found in patient
and control networks ranged between five and eleven. As Fig. 4
(lower panel) indicates, the AD group showed a loss of module count,
strongest in higher frequency bands.

Fig. 2.Modules and hub types.Modules are tightly linked communities within a larger network. Provincial hubs, indicated in red, havemany connections within their ownmodule, while
connector hubs, in blue, have relatively strong outward links. Provincial hubs have highwithin-module degrees (Zi), while connector hubs have high participation coefficient (PC) values.
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where M is the set of modules, and ki(m) is the sum of all links between i and all nodes 
in module m. The within module degree and the participation coefficient both range 
from 0 to 1, and determine the identity of a node in the modular network structure:

o	 Provincial hubs: relatively many links within own module (high Zi, low PC)
o	 Connector hubs: relatively many links to other modules (low Zi, high PC)

Figure 2. Modules and hub types. Modules are tight communities within a larger network. Provincial 
hubs, indicated in red, have many connections within their own module, while connector hubs, in blue, 
have relatively strong outward links.

In this study, node identities were determined by their relative values compared to the 
other nodes. To be able to describe group differences in these measures, global and 
regional mean Zi and PC values were examined. For the latter analysis, nodes were as-
signed to five cortical regions (frontal, temporal, central, parietal, and occipital). 

Statistical analysis

Statistical analysis was done with SPSS for Mac (version 18.0). All analyses were per-
formed for each epoch separately for all different frequency bands, and prior to group 
comparison the four epochs per person were averaged. Since functional connectivity 
and graph measures showed Gaussian distributions, group differences were tested with 
independent sample t-tests. Regional Zi and PC analysis was performed with an ANOVA 
for repeated measures, using group as between-subject factor and cortical region as 
within-subject factor (Greenhouse-Geisser corrected). Correlations of graph measures 
with neuropsychological test scores in AD were assessed with Pearson’s test. A signifi-
cance level of α < 0.05 was used for all tests.
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Results

Modularity – descriptive results

To get a first impression of modular organization, individual network modules were 
visualized. Comparing several different resting-state MEG epochs of the same person, 
modular structure was generally consistent. Often, three or four strongly clustered 
frontal or parietal modules were found, along with several weaker temporal and oc-
cipital ones. Modules were usually localized clusters of adjacent cortical areas, but also 
showed long-distance fragments. Inter-hemispheric modules were a frequent finding, 
especially bi-temporal. To demonstrate a representative example of group differences 
in modular organization of these functional networks, module head plots are shown for 
two matched subjects in the beta frequency band (figure 3). 

The differences in distributions between the two persons are apparent; for example, 
while the healthy person shows strong parietal modules, they are absent in the AD 
patient. In the healthy control a long-distance, inter-hemispheric module with frontal, 
temporal, parietal and occipital nodes is visible.

Figure 3. Head plots of network measure distributions and modules for two representative female subjects 
in the beta frequency band. Top view, top of each plot represents frontal region. Note the heterogeneous 
distribution of the different graph measures. Zi=within module degree, PC=participation coefficient.
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Modularity – global results

Global modularity (Q) results are depicted in figure 4 (upper panel). Overall, modularity 
values were around 0.2, which is an indication of a weak modular network organization. 
Highest modularity was found in the beta band of the control group, while gamma 
band modularity was much lower in both groups. In patients with AD, delta and theta 
bands showed an increase, and beta and gamma bands showed a strong decrease in 
modularity. The number of modules (Nm) found in patient and control networks ranged 
between five and eleven. As figure 4 (lower panel) indicates, the AD group showed a loss 
of module count, strongest in higher frequency bands. 

Figure 4. Main modularity results, AD versus controls (n=36). Upper panel shows changes in global 
modularity (Q) for all frequency bands. Lower panel shows changes in the mean number of modules (Nm) 
for all frequency bands. * p < 0.05, ** p < 0.01.
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Modularity – Within module degree (Zi)

A decrease of global intra-modular strength, as expressed by the average within module 
degree (Zi), was present in AD patients in the beta band only (see figure 5).

 
Figure 5. Within-module degree (Zi) comparisons for all frequency bands, AD versus controls (n=36). Error 
bars indicate standard deviations. * p < 0.05

Regional analysis of Zi in the beta band using ANOVA for repeated measures showed no 
main effect of group (F[1,34] = 3.794, p = 0.060) but one for region (F[4,136] = 54.497, p 
< 0.001). Moreover, we found a group*region interaction (F[4,136] = 3.771, p = 0.040). 
Intra-modular strength was highest in the parietal areas (see table 2).

Table 2. Regional synchronization likelihood (SL) and within module degree (Zi) values in the beta 
frequency band

Beta Band (13-30 Hz) Central Frontal Occipital Parietal Temporal

SL AD 0.014 (±0.003) 0.015 (±0.003) 0.017 (±0.002) 0.018 (±0.004) 0.015 (±0.001)

C 0.017 (±0.003) 0.017 (±0.003) 0.016 (±0.002) 0.020 (±0.004) 0.016 (±0.002)

Zi AD -0.558 (±0.202) 0.154 (±0.154) 0.139 (±0.301) 0.156 (±0.412) -0.113 (±0.110)

C -0.444 (±0.254) 0.227 (±0.101) -0.029 (±0.233) 0.422 (±0.304) -0.161 (±0.103)

Group means per cortical region of synchronization likelihood (SL) and within-module degree (Zi) in 
the beta frequency band, in AD patient and control group. Standard deviations are printed between 
parentheses. Note that the parietal region shows highest values for both measures (printed in bold), 
indicating hub status.

Modularity – Participation coefficient (PC)

Global inter-modular strength, as expressed by the participation coefficient (PC), de-
creased in the delta and theta frequency bands in AD, while the other bands did not 
show group differences (figure 6).
Regional analysis of PC in the delta band using ANOVA for repeated measures showed 
main effects of group (F[1,34] = 8.488, p = 0.006) and region (F[4,136] = 30.876, p < 



Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease 93

0.001). There was no interaction between group and region, indicating a comparable 
decrease of PC across regions in AD patients. In the theta band we found a similar pat-
tern, as there was a main effect of group (F[1,34] = 6.506, p = 0.015) and region (F[4,136] 
= 24.889, p < 0.001), but no group*region interaction.

Figure 6. Participation coefficient (PC) comparisons for all frequency bands, AD versus controls (n=36). 
Error bars indicate standard deviations. * p < 0.05, ** p < 0.01.

Modularity and cognition

In the AD group, several remarkably strong correlations were found: delta band modu-
larity and fluency (r = -0.80, p < 0.01), inter-modular strength (PC) and word recall (r = 
0.71, p < 0.01), inter-modular strength and fluency (r = 0.75, p < 0.01), lower alpha band 
modularity and visual recognition (r = -0.55, p < 0.05) inter-modular strength and visual 
recognition (r = 0.69, p < 0.01), and inter-modular strength and fluency (r = 0.72, p < 
0.05). Similar, consistent trends but no significant correlations were found in any of the 
other frequency bands.

Discussion

The main message of this study is that the modular organization of large-scale sponta-
neous brain activity networks is disrupted in AD. Graph theoretical modularity analysis 
demonstrates weakening links within and, especially, between functional modules, 
correlating with cognitive dysfunction. Moreover, the vulnerability of the parietal region 
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in AD is confirmed by regional analyses. In the following paragraphs we will relate our 
findings to current literature and discuss methodological issues.

Describing resting-state functional modularity

 In this exploratory study, we describe functional modularity in resting-state MEG data 
of AD patients and healthy controls. Although the methodology used in our study is 
different from the well-known characterization of resting-state networks (RSN) in fMRI 
data, the aim is similar: to describe functionally meaningful clusters or sub-networks 
in spontaneous brain activity. In fMRI literature, resting-state networks have been 
described consistently, indicating the existence of functional subgroups (Eguiluz et al., 
2005; Achard et al., 2006; Damoiseaux et al., 2006; De Luca et al., 2006; Salvador et al., 
2005; Salvador et al., 2008; van den Heuvel et al., 2009). These sub-networks are usually 
identified using independent component analysis (ICA).

Several recent studies have also demonstrated the existence of non-random modular 
patterns in resting-state brain activity in healthy individuals  (Meunier et al., 2009; Fan 
et al., 2010; van den Heuvel and Hulshoff Pol, 2010; Schwarz et al., 2008; Ferrarini et al., 
2009). In general, caution should be used when investigating components of a complex 
system. Networks should preferably be examined both globally and locally, taking into 
account the relation between the whole network and its components. In this regard, 
an advantage of graph theoretical modularity algorithms is that connectivity within 
and especially between different modules and their role with regard to the rest of the 
network can be described more accurately. This seems a significant benefit, judging 
from the marked intermodular connectivity changes in AD patients in the present study. 

Despite methodological differences, the few modularity-based studies so far have 
demonstrated similarities in the modular organization of large-scale brain networks. The 
number of modules we observed in our networks resembled what was found in previous 
fMRI studies; about five to seven large modules (He et al., 2009; Meunier et al., 2009; van 
den Heuvel et al., 2008; Salvador et al., 2005). Anatomical and structural imaging studies 
using graph theory reported five to ten modules on average  (Hilgetag et al., 2000; Chen 
et al., 2008; Hagmann et al., 2008). Since structural and functional networks in the brain 
are intimately related, functional modularity is probably constrained by the underlying 
structural connectivity  (Bullmore et al., 2009).

Using resting-state fMRI, Meunier et al. looked at differences of modular organization 
in two age groups of 18-33 and 62-76 years  (Meunier et al., 2009). Here, one of the 
main findings was that the pattern of inter-modular connections changed extensively, 
possibly reflecting normal human age-related brain changes. 

The first MEG study investigating modularity of patient data with graph theoretical 
tools was performed in epilepsy patients  (Chavez et al., 2010). Using a similar modularity 
algorithm, (seizure free) resting-state differences were found in the theta-alpha band 
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range (5-14 Hz) between patients and controls. Like in the present study, main group dif-
ferences were found in the inter-modular connections. Another very interesting recent 
study combining MEG recorded during a memory task and graph theoretical modularity 
investigated persons with Mild Cognitive Impairment (MCI) (Buldú et al., 2011). While 
functional connectivity was slightly increased in the MCI group, overall modularity was 
lower, resembling the changes found in the present study. Although the comparison 
between resting-state and task paradigms should be made with caution, both studies 
suggest a link between modularity and cognition.

Neuronal synchronization between different brain areas is the prime candidate for 
the swift coordination of cognitive processes (Singer and Gray, 1995; Varela et al., 2001; 
Fries, 2005). Since synchronization between neuronal assemblies is accomplished across 
a large spectrum of frequencies, a method with a sufficiently high temporal precision is 
essential. Combined with its decent spatial resolution and a relatively direct recording of 
neuronal activity compared to fMRI, MEG is therefore well suited for this task, especially 
regarding cortical sources (Pereda et al., 2005).

With average modularity index values around 0.2, modularity was weak in both 
groups. Similarly, the absolute within-module degree (Zi) values were low in general and 
participation coefficient (PC) values were high, indicating that most nodes had extensive 
links outside their own module. These results might lead to the conclusion that resting-
state functional modularity is weak. However, in our weighted networks all nodes are 
connected by definition, possibly including spurious links that might be primarily a 
reflection of noise or volume conduction instead of true synchronization. This might 
make the identification of the underlying modular organization more difficult, and 
overall modularity values lower. To avoid this, one could set a threshold, so that weak 
connections are discarded before graph analysis is performed  (Stam et al., 2006; de 
Haan et al., 2009). However, setting a threshold is arbitrary and can even introduce new 
problems (van Wijk et al., 2010). We therefore chose to use weighted networks without 
thresholds, preserving all information from the original connectivity matrices. Although 
this pragmatic choice affects the outcome, we believe that the observed group changes 
in our data cannot be explained by methodological bias in this regard.

Volume conduction remains an issue of concern in sensor-space EEG and MEG 
analysis. The reason for choosing SL as functional connectivity measure instead of one 
less sensitive to volume conduction, such as the Phase Lag Index (PLI), is threefold: 
first, since the PLI, as an extremely conservative measure, discards near-zero phase lag 
synchronization, it thereby also ignores genuine near-zero phase lag synchronization 
that is present. Since particularly adjacent regions can be synchronized with small phase 
lags, short-range synchronization might be underestimated. This might form a problem 
in particular when looking at modules, since they often contain adjacent regions and 
short-range synchronization. Second, although sensitivity to volume conduction might 
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influence modularity results, it is expected to influence both the AD patient group and 
the healthy control group similarly, and therefore it cannot explain group differences. 
Third, since the SL has been used more extensively in previous AD-related studies, it 
makes for an easier evaluation of this work with regard to existing literature.

Finally, the use of other modularity metrics might also result in different or additional 
findings, like hierarchical modularity or overlapping modules (Alexander-Bloch et al., 
2010; Lancichinetti and Fortunato, 2009; Palla et al., 2005).

Modularity and cognition

The observed correlations between modularity measures and cognitive test scores 
indicate a possible significance of resting-state modularity with regard to cognitive 
function. This is in line with earlier studies, where structural and functional (resting-state 
and task-based) modularity has been linked to cognitive function (Hilgetag et al., 2000; 
Salvador et al., 2005; Kitzbichler et al., 2011), healthy aging (Meunier et al., 2009) and 
disease conditions (Chavez et al., 2010; Buldu et al., 2011). Although it is tempting to 
speculate about specific functional roles, modules may also serve less concrete (but 
no less important) purposes, like stimulating or inhibiting oscillatory activity in other 
frequency bands, or be a display of ‘stationary’ oscillatory activity. We did find several 
potentially meaningful correlations of global modularity measures with neuropsycho-
logical test scores. Directions of these correlations were consistent, and in line with our 
hypothesis: the observed group differences in AD modularity measures were related to 
a worse performance on these relevant cognitive tests. The finding that resting-state 
activity is related to task performance suggests the importance of ‘default’ functional 
network integrity for cognition. However, relating the distinct resting-state modules 
and their characteristics to specific cognitive domains, especially in individual subjects, 
requires further analysis.

Alzheimer’s disease: a ‘connector hub disease’?

The changes in global network modularity we found complement earlier studies that 
report loss of overall network structure in AD  (He et al., 2008; Supekar et al., 2008; Stam 
et al., 2009; de Haan et al., 2009). The beta and gamma bands show a decrease both in 
modularity and in number of modules, but AD patients also show paradoxical modular-
ity increases in the delta and theta bands. However, this can be explained by the strong 
loss of inter-modular connections in these bands (decrease of PC values). It is important 
to recognize that both increases and decreases in graph measure values can accompany 
sub-optimal cognitive conditions (Stam, 2010;Pievani et al., 2011).

Disconnection syndromes result from either damage to the connections between 
areas or local damage in association regions  (Geschwind, 1965; Catani and ffytche, 
2005). Translated to network terms, one would expect primarily inter-modular damage 
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(decrease in connector hubs, or lower PC values) and possibly intra-modular damage 
(decrease in provincial hubs, or lower Zi values) in network hub regions. Our present 
findings in AD are in agreement with this prediction. The most striking finding of the 
regional graph analysis is the role of the parietal areas in AD in the beta band; according 
to their high strength and high within-module degree they serve as hub regions in the 
cortical network (see table 3). These findings are in line with the notion that the parietal 
association cortices serve as important integrative association areas  (Mesulam, 1998). 
Structural, functional and metabolic vulnerability in AD of the parietal cortex has been 
demonstrated with various techniques  (Iturria-Medina et al., 2008; Gong et al., 2009; Li 
et al., 2009; Buckner et al., 2005; Sperling et al., 2009). In our study, the parietal hub areas 
were substantially weakened, confirming the vulnerability of the parietal region in AD. 
However, although intra-modular strength does show correlations with fluency in theta 
and beta bands, for cognition the inter-modular strength seems to play a larger role; 
there are more correlations with cognitive test scores (worse performance with lower 
PC), they are stronger, and the group differences in inter-modular strength are larger. 
Moreover, since the variability in PC was relatively small due to the methodological choice 
of using weighted, unthresholded networks, these results may even be underestimated. 
In this regard, connector hubs and thus global network integrity seem more important 
for adequate cognitive performance than local clustering. Strongest PC differences were 
found in delta and theta bands, suggesting that, while higher frequency bands are often 
associated with local processing, long-range low-frequency synchronization might be 
important for successful connector hub-mediated inter-modular connectivity.

The higher connectivity status of hub regions leading to greater vulnerability is a 
phenomenon that is encountered in many other complex networks like the World 
Wide Web, metabolic and email networks  (Albert et al., 2000; Jeong, 2004; Newman, 
2003). Intuitively, a metabolic wear-and-tear or overload scenario of hub regions seems 
plausible, since they carry most network traffic. The overlap between hub regions and 
the default mode network suggests that these regions are not only the most highly con-
nected, but also the most active ones  (Buckner et al., 2009). To evaluate this hypothesis, 
a better fundamental understanding of the relation between neural network connectiv-
ity, neuronal activity, and pathology is necessary. For this purpose, graph theoretical 
damage modeling can be a useful complementary bottom-up approach  (Alstott et al., 
2009; Rubinov et al., 2009; Stam et al., 2009; Stam, 2010). 

Conclusion

It becomes more and more evident that disruption of structural and functional brain 
connectivity plays a pivotal role in the onset of dementia  (Stam, 2010). Graph theory 
allows us to go beyond classifying AD as a disconnection syndrome, providing more 
detail and meaning. Functional modules are theoretically plausible representations 
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of cognitive (sub-)processes, and therefore modularity analysis of MEG data seems a 
method with an appropriate spatiotemporal resolution to examine large-scale brain 
coordination. Even in the absence of specific cognitive tasks, this study demonstrates 
functional modularity changes in Alzheimer patients, ranging from local to long-range 
effects and from slow to fast brain activity. Intermodular communication seems to be 
particularly vulnerable in Alzheimer’s disease, suggesting the relevance of a network 
perspective on dementia, and illustrating the potential of graph theoretical analysis to 
describe disconnection syndromes such as Alzheimer’s disease in a more detail.
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Abstract

In Alzheimer’s disease (AD), structural and functional brain network organization is 
disturbed. However, many of the present network analysis measures require a priori 
assumptions and methodological choices that influence outcome and interpretation. 
Graph spectral analysis is a more direct algebraic method to describe network prop-
erties, which might lead to more reliable results. In this study, graph spectral analysis 
was applied to magnetoencephalography (MEG) data to explore functional network 
integrity in AD. Sensor-level resting-state MEG was performed in 18 Alzheimer patients 
(age 67±9, 6 females) and 18 healthy controls (age 66±9, 11 females). Weighted, un-
directed graphs were constructed based on functional connectivity analysis using the 
Synchronization likelihood (SL), and graph spectral analysis was performed with a focus 
on network connectivity, synchronizability and node centrality. Main outcomes were 
a global loss of network connectivity and altered synchronizability in most frequency 
bands. Eigenvector centrality mapping (ECM) confirmed the hub status of the parietal 
areas, and demonstrated low centrality of the left temporal region in the theta band in 
AD patients that was strongly related to MMSE (global cognitive function test) score 
(r=0.67, p=0.001). Summarizing, graph spectral analysis is a theoretically solid approach 
that is able to detect disruption of functional network topology in AD. In addition to the 
previously reported overall connectivity losses and parietal area hub status, impaired 
network synchronizability and a clinically relevant left temporal centrality loss were 
found in AD patients. Our findings imply that graph spectral analysis is valuable for the 
purpose of studying altered brain network topology and dynamics in AD.
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Introduction

In Alzheimer’s disease (AD), the most prevalent form of dementia, imaging techniques 
have been successful in demonstrating local brain changes like atrophy, hypometabo-
lism, and protein deposition, but these phenomena do not show a straightforward rela-
tion with the gradually progressing severity of cognitive symptoms in AD  (Pievani et 
al., 2011). Since cognition depends heavily on efficient interaction between brain areas, 
changes in brain network connectivity might reflect cognitive decline more accurately. 
Both the investigation of the physical network wiring in the brain as well as the superim-
posed network dynamics (‘functional’ networks) may help to relate symptoms in AD to 
the underlying neurodegenerative processes.

In recent years graph theory has increasingly been used as a theoretical framework 
to describe brain network characteristics  (Sporns, 2010). Graph theoretical studies in 
AD demonstrate disruption of large-scale brain network integrity  (Stam et al., 2007; 
Supekar et al., 2008; He et al., 2009; de Haan et al., 2009; Stam et al., 2009; Lo et al., 2010; 
Sanz-Arigita et al., 2010). However, applying graph theoretical concepts to neuroscience 
also poses methodological dilemmas. A growing number of measures is being devel-
oped  (Rubinov and Sporns, 2010), and although the reproducibility of graph measures 
is good  (Deuker et al., 2009), varying definitions can bias outcomes and interpretations. 
For example, many graph measures are directly dependent on network size and density, 
demanding arbitrary normalization or thresholding procedures (van Wijk 2010). 

A technique that is known in fields like mathematics, chemistry and engineering for 
its powerful characterization of network features is Graph Spectral Analysis (GSA)  (Van 
Mieghem, 2011). In short, GSA investigates the spectrum of a network, which is the set 
of eigenvectors and corresponding eigenvalues that is mathematically derived from the 
adjacency or Laplacian matrix of the network. The spectrum contains considerable infor-
mation about relevant network properties such as connectivity levels and resilience to 
damage, but also provides measures directly related to network dynamics, such as the 
spread of information throughout a network (Bonacich and Lloyd, 2001; Van Mieghem 
et al., 2009). Since interaction between distant brain regions is essential for cognition, 
dynamical efficiency is probably an important aspect of large-scale brain network 
topology (Arenas et al., 2008). Two graph spectral measures described in this study, 
the spectral gap and eigenratio, make predictions about the dynamical behavior in a 
network based on its topology. Another, relatively familiar graph spectral measure is 
the eigenvector centrality (EC) which is used to identify highly connected ‘hub’ regions 
in networks  (Bonacich, 2007; Lohmann et al., 2010). Since hub region vulnerability has 
repeatedly been reported in AD  (Buckner et al., 2005; Stam et al., 2009), the further 
exploration of hub structure is very relevant, as it could point towards an explanation for 
this fundamental pathophysiologic phenomenon.
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The deterministic nature of graph spectral analysis and its solid theoretical back-
ground might make it a promising complement to the commonly used graph measures. 
We set out to investigate AD-related changes in five spectral measures describing 
network topology and hub status. To evaluate the clinical value of this approach, the 
relation of regional eigenvector centrality to cognitive test scores was also examined. 
Our hypothesis was that, in addition to the previously reported loss of functional net-
work connectivity, graph spectral measures would be able to detect impaired network 
synchronizability. Also, we expected to find parietal hub region vulnerability and a cor-
responding decrease of regional EC values in AD. 

Materials and Methods

Patients and controls

The study involved 18 patients with a diagnosis of probable AD according to the 
NINCDS-ADRDA criteria  (McKhann et al., 1984) who were recruited from the Alzheimer 
Centre of the VU University Medical Center. AD patients were assessed according to a 
standard diagnostic workup, which involved history taking, physical and neurological 
examination, an interview with a spouse or close family member, neuropsychological as-
sessment, blood tests, MRI of the brain, and EEG. The diagnosis was made in a consensus 
meeting in which all the available clinical data were considered by a multidisciplinary 
team. Exclusion criteria for this study were active psychiatric or neurologic disease, or a 
MMSE score below 16. Eighteen healthy controls, often spouses of patients, were includ-
ed as well. No structural (MRI) scans of the control subjects were made, but they were 
screened by a neurologist and underwent the same neuropsychological test battery as 
the patients. In both groups use of psychoactive medication was incidentally reported:  
antidepressants (specific serotonine reuptake inhibitors and tricyclic antidepressants, 
AD n=3: controls n=1) and sleep medication (benzodiazepines, AD n=1: controls n=2). 
Since AD patients were diagnosed shortly before the MEG recording was performed, 
few of them already used cholinesterase inhibitors (galantamine, n=2). Most frequent 
comorbidities were hypertension (AD n=6; controls n=3) and diabetes mellitus type 2 
(AD n=4: controls n=0). Main subject characteristics are summarized in table 1.

Global cognitive functioning was assessed with the Mini Mental State Examination 
(MMSE)  (Folstein et al., 1983). Level of education was classified according to the system 
of Verhage ranging from 1 to 7 (low to highly educated)  (Verhage, 1965). The Local Re-
search Ethics Committee approved the study and all participants gave written informed 
consent. Subjects and recordings were identical to a recent graph theoretical study 
focusing on modularity (de Haan et al., 2011).
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Table 1. Subject characteristics. Data are represented as mean±SD unless indicated otherwise. N= 
number of subjects, M=males, F=females, MMSE=mini mental state examination. Education score is based 
on Verhage index  (Verhage F, 1965).

Controls Alzheimer patients

N 18 18

Age 66±9 67±9 p = 0.82

Gender  (M/F) 7/11 12/6 p = 0.16

MMSE 29±1 23±1 p < 0.001

Education 5±1 5±1 p = 0.89

MEG recording and post-processing

Magnetic fields were recorded while subjects were seated inside a magnetically shielded 
room (Vacuumschmelze GmbH, Hanau, Germany) using a 151-channel whole-head MEG 
system (CTF Systems Inc., Port Coquitlam, BC, Canada). A third-order software gradient   
(Vrba and Robinson, 2001) was used after online band-pass filtering between 0.25 and 
125 Hz. Sample frequency was 625 Hz. For technical reasons two channels had to be 
omitted, leaving 149 channels for analysis. Subjects were measured during a no-task, 
eyes-closed condition. At the beginning and at the ending of the recording the head 
position relative to the coordinate system of the helmet was recorded by leading small 
alternating currents through three head position coils attached to the left and right pre-
auricular points and the nasion on the subject’s head. Head position changes during 
the recording up to approximately 1.5 cm were accepted. During the MEG recording, 
subjects were instructed to close their eyes, stay awake, and reduce eye movements. 
In addition, we instructed subjects to just let their minds wander, and certainly not to 
perform specific cognitive tasks such as counting.

Typical artifacts were due to (eye) movements, swallowing, dental prosthetics, or 
drowsiness. For each subject, care was taken to select four artifact-free epochs of 4096 
samples (approximately 6.5 seconds) by two of the investigators (WDH and CS), who 
were blinded to the diagnosis. All further analyses were performed in the following 
frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), higher alpha 
(10-13 Hz), beta (13-30 Hz) and gamma (30-45 Hz). All functional connectivity and graph 
analyses were performed for each epoch separately, and prior to statistical analysis the 
four epoch results of each person were averaged.

All functional connectivity and subsequent graph spectral analyses were performed 
with in-house developed software (BrainWave version 0.8.68, CS. Software available 
at: http://home.kpn.nl/stam7883/brainwave.html). Graph spectral measures described 
below were implemented using an open access JAVA library called JAMA (http://www.
cs.princeton.edu/introcs/95linear/Eigenvalues.java.html)
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Functional connectivity analysis

Correlations between all pair-wise combinations of MEG channels were computed with 
the Synchronization Likelihood (SL). Mathematical details can be found in previous work  
(Stam and Dijk, 2002; Montez et al., 2006), and in the supplemental material; here we 
give a brief description. The SL is a general measure of the correlation or synchronization 
between two time series, which is sensitive to linear as well as nonlinear interdependen-
cies. The basic principle of the SL is to divide each time series into a series of ‘patterns’ 
(roughly, brief pieces of time series containing a few cycles of the dominant frequency) 
and to search for a recurrence of these patterns. The SL is then the probability that pat-
tern recurrence in time series X coincides in time with pattern recurrence in time series Y. 
The end result of computing the SL for all pair-wise combinations of channels is a square 
matrix (with 149 rows and columns, equal to the number of MEG channels), where each 
entry contains the resulting SL value of the sensor pair. This matrix is called the weighted 
(connections strengths or weights are included) adjacency or connectivity matrix A. Note 
that any connectivity measure could be used for this purpose. Since all connections in 
our network are bidirectional, the adjacency matrix is symmetrical along its diagonal axis.

Graph Spectral Analysis

In this section, we give a brief explanation of the concepts and measures used in this study; 
for a more extensive technical background, please see  (Van Mieghem, 2011; Bonacich and 
Lloyd, 2001; Brouwer and Haemers, 2011; Newman, 2007; Farkas et al., 2001). The multi-
step procedure from MEG recording to spectral analysis is summarized in figure 1.
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Figure 1. Multi-step procedure from MEG recording to the computation of graph spectral measures. For 
this study brain activity was recorded in an eyes-close resting-state condition. Functional connectivity 
analysis was performed on 4 time segments (ca. 6.5 seconds) per person. Subsequently, weighted 
functional brain networks were formed, and from the corresponding adjacency matrices the Laplacian 
matrices were constructed. For each network, from both the adjacency and Laplacian matrices the 
spectrum was calculated, and the eigenvalues from these spectra were used to compute various spectral 
measures.  Spectral measures were then used in statistical analysis to compare group averages and 
correlation with cognition. Note that once a network is constructed, its eigenvectors and eigenvalues will 
be determined.

Graph spectral measures are derived from the adjacency or Laplacian matrix Q. This is 
done by subtracting the adjacency matrix from the degree matrix Δ (Q=Δ-A), which is the 
diagonal matrix with the nodal degrees (equal to the rowsum of the adjacency matrix); 
see figure 1 for an example. The Laplacian matrix can be regarded as  way to combine 
both connectivity and degree information (all relevant information) in the same matrix. 
Both the adjacency and Laplacian matrix can be written in terms of their eigenvectors 
and corresponding eigenvalues, e.g. A=XAXT, where the matrix X consists of all eigen-
vectors in columns and the diagonal matrix A contains the corresponding eigenvalues. 
The spectral information (X and A) thus contains the same information as the topology, 
or adjacency matrix (Van Mieghem, 2011). The spectrum of a graph can be regarded as 
a unique ‘fingerprint’. Especially the different eigenvalues contain precise information 
about network properties, and can be used to quantitatively classify network topolo-
gies. Here, we briefly describe four graph spectral measures that contain meaningful 
information about the network as a whole (two derived from the adjacency matrix, two 
from the Laplacian matrix) and one measure with a more local focus.  
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Global graph analysis

The spectral radius λ is the largest eigenvalue of the adjacency matrix, and obeys 2L/
N≤λ≤dmax, where N and L are the number of links and nodes and dmax is the maximum 
degree in the graph (Van Mieghem, 2011). For a fixed size N of the network, the larger 
λ is, the more links L, and the better connected the network  (Brouwer and Haemers,; 
Dvorák and Mohar, 2010). The inverse of the spectral radius equals the epidemic thresh-
old in a network (Van Mieghem et al., 2009), and is proportional to the synchronization 
threshold of a network (Restrepo et al., 2005). It is also related to kappa, the ratio of the 
average squared degree and the average degree.

The spectral gap describes how fast a dynamic process in a network will converge 
to the steady state (Van Mieghem, 2011). It is equal to the difference between the two 
largest eigenvalues of the adjacency matrix. Please note that the spectral gap and the 
eigenratio (introduced below) are graph spectral measures that deal with synchronized 
states of a network, as opposed to the underlying synchronization measure between 
nodes (SL in this case) that is used to determine the connectivity matrix.

The algebraic connectivity, introduced by Fiedler in 1973, measures how difficult it 
is to tear a network apart. If the network is fully connected, the algebraic connectivity 
is greater than 0. The magnitude of the algebraic connectivity can also be regarded as 
a measure for network ‘robustness’. The algebraic connectivity is equal to the second-
smallest eigenvalue of the Laplacian matrix  (Fiedler, 1973; Mohar, 1991; Van Mieghem, 
2011). 

The eigenratio expresses the stability of a synchronized state in a dynamical network. 
It is the ratio of the largest and the second-smallest eigenvalue of the Laplacian matrix. 
The smaller it is the more stable the network synchronization (Arenas et al., 2008). In this 
study we use its inverse (1/eigenratio) to get a value between 0 and 1.

Regional graph analysis

The eigenvector centrality (EC) is a measure of the relative importance (or hub status) 
of a node within a network  (Bonacich and Lloyd, 2001; Bonacich, 2007).  The most 
straightforward method to identify hubs is by their degree centrality, which assigns 
hub status to nodes with the highest number of connections (or highest sum of all 
weighted connections). However, this measure only takes a node’s direct connections 
into account. Popular alternative centrality measures that have a wider scope are the 
betweenness centrality and closeness centrality; they also have some drawbacks however, 
such as their dependency on path length and considerable computational demands  
(Rubinov et al., 2009; Rubinov and Sporns, 2011). In contrast, the defining characteristic 
of the eigenvector centrality is that it takes into account both the degree of a node 
and the degrees of its neighbors. It therefore recognizes the fact that having important 
nodes as immediate neighbors makes a node more important in the network. Actually, 
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the largest eigenvector component i is a ‘dynamic’ degree, where ‘dynamic’ refers to all 
walks in the graph that traverse the node i. Eigenvector centrality xi for node i is the ith 
component of the eigenvector corresponding to the largest eigenvalue of the adjacency 
matrix, and is equal to: 
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where λ is the largest eigenvalue of the adjacency matrix, N is the total number of 
nodes, and A is the adjacency matrix of the network. Note that xi is proportional to 
sum of weights of all nodes connected to it. EC is calculated per node, but we 
averaged values over ten sensor groups (left and right frontal, temporal, central, 
parietal and occipital) to obtain a centrality distribution at a larger-scale. 
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(frontal, central, temporal, parietal and occipital) as within-subjects factors. Gender 
was included as covariate. Correlations of the regional eigenvector centrality values 
with MMSE scores were evaluated with Pearson’s test. Analyses were performed for 
all frequency bands separately. For all tests a significance level of α ≤ 0.05 was used, 
no correction for multiple comparisons was applied. 
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Statistical analysis

The statistical analysis was performed with SPSS for Mac (version 18.0). Normal distri-
bution of all measures was tested with Kolmogorov-Smirnov tests. For testing group 
differences in spectral radius, spectral gap, algebraic connectivity and eigenratio we 
performed independent sample t-tests and non-parametric Mann Whitney U tests, 
which produced very similar results. We analyzed regional EC results using ANOVA for 
repeated measures (Greenhouse-Geisser corrected) with group as between-subjects 
factor, and hemisphere (left and right) and sensor region (frontal, central, temporal, 
parietal and occipital) as within-subjects factors. Gender was included as covariate. Cor-
relations of the regional eigenvector centrality values with MMSE scores were evaluated 
with Pearson’s test. Analyses were performed for all frequency bands separately. For all 
tests a significance level of α ≤ 0.05 was used, no correction for multiple comparisons 
was applied.

Results

Global graph analysis

The spectral radius was generally lower in AD patients, but this difference reached sig-
nificance only in the gamma band (p < 0.01, see figure 2). This indicates a higher network 
synchronizability threshold in the gamma band.

The spectral gap was lower in AD patients in all frequency bands except for the theta 
band, which was only significant in the gamma band (p < 0.01, see figure 3). This indi-
cates that functional network dynamics in the gamma band will take longer to reach a 
steady, synchronized state in AD.
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The algebraic connectivity in AD patients was lower in the lower alpha (p < 0.05), beta 
(p < 0.01) and gamma bands (p < 0.01, see figure 4). No differences were found in the 
remaining three bands. The decrease in multiple frequency bands can be interpreted as 
a loss of overall connectivity in AD.

The eigenratio was lower in the theta band (p < 0.05), and higher in the gamma band 
(p < 0.01) in AD when compared to controls (see figure 5). No differences were found in 
the other frequency bands. This implies that overall network synchronizability decreases 
in the theta band, but increases in the gamma band in AD. 

Figure 2. Spectral radius results for the different frequency bands. Error bars indicate standard deviation. 
AD = Alzheimer patient group, C = control group. a1 = lower alpha band, a2 = higher alpha band. ** p < 
0.01 (uncorrected).

Figure 3. Spectral gap results for the different frequency bands. Error bars indicate standard deviation. AD 
= Alzheimer patient group, C = control group. a1 = lower alpha band, a2 = higher alpha band. ** p < 0.01 
(uncorrected).
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Figure 4. Algebraic connectivity results for the different frequency bands. Error bars indicate standard 
deviation. AD = Alzheimer patient group, C = control group. a1 = lower alpha band, a2 = higher alpha 
band. * p < 0.05, ** p < 0.01 (uncorrected).

Figure 5. Eigenratio results for the different frequency bands. Note that the depicted results are based on 
the inverse of the original eigenratio (1/eigenratio) to obtain a value between 0 and 1. Error bars indicate 
standard deviation. AD = Alzheimer patient group, C = control group. a1 = lower alpha band, a2 = higher 
alpha band. * p < 0.05, ** p < 0.01 (uncorrected).

Regional graph analysis

ANOVA for repeated measures of regional EC results (see table 2) showed no main ef-
fect of group, but did show a main effect of region in all bands except for the delta 
band. In the gamma band a main effect of hemisphere was found, but no effects were 
found in any of the other frequency bands. Moreover, higher alpha and gamma bands 
showed region*hemisphere interactions, indicating dissimilar regional differences for 
each hemisphere in those bands. Region*group interactions were found in the theta 
and beta band, as well as a hemisphere*group interaction in the beta band, pointing to 
changes in EC distribution in AD.
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Table 2. Eigenvector centrality - ANOVA for repeated measures results. Repeated measures ANOVA 
analysis for eigenvector centrality (EC) averaged per sensor region (frontal, temporal, central, parietal and 
occipital sensors in both hemispheres). A Greenhouse-Geisser correction was applied to the degrees of 
freedom of the ANOVA. P-values are uncorrected. Significant effects are printed in bold.

Between 
subjects

Within Subjects

Group Region Hemisphere
Region * 

hemisphere
Region* 

group
Hemisphere * 

group
Region*

hemisphere*group

Delta
F[1,33] = 

0.24
p = 0.63

F[4,132] = 
1.23

p = 0.30

F[4,132] = 0.16
p = 0.90

F[4,132] = 0.66
p = 0.56

F[4,132] = 
1.32

p = 0.27

F[4,132] = 0.17
p = 0.68

F[4,132] = 2.15
p = 0.11

Theta
F[1,33] = 

1.08
p = 0.31

F[4,132] = 
3.96

p = 0.019

F[4,132] = 1.00
p = 0.32

F[4,132] = 0.31
p = 0.77

F[4,132] = 
3.12

p = 0.04

F[4,132] = 0.44
p = 0.83

F[4,132] = 0.02
p = 0.99

Lower 
alpha

F[1,33] = 
0.52

p = 0.48

F[4,132] = 
3.21

p = 0.04

F[4,132] = 3.57
p =0.07

F[4,132] = 1.06
p = 0.37

F[4,132] = 
1.74

p = 0.18

F[4,132] = 0.37
p = 0.55

F[4,132] = 1.31
p = 0.28

Higher 
alpha

F[1,33] = 
0.64

p = 0.43

F[4,132] = 
5.63

p = 0.01

F[4,132] = 0.73
p = 0.40

F[4,132] = 4.44
p = 0.01

F[4,132] = 
2.12

p = 0.13

F[4,132] = 0.38
p = 0.54

F[4,132] = 0.14
p = 0.89

Beta
F[1,33] = 

0.64
p = 0.43

F[4,132] = 
3.17

p = 0.046

F[4,132] = 0.03
p = 0.87

F[4,132] = 0.25
p = 0.78

F[4,132] = 
3.96

p = 0.02

F[4,132] = 4.90
p = 0.03

F[4,132] = 0.77
p = 0.47

Gamma
F[1,33] = 

0.54
p = 0.47

F[4,132] = 
4.47

p = 0.02

F[4,132] = 7.49
p = 0.01

F[4,132] = 8.30
p = 0.001

F[4,132] = 
1.24

p =0.30

F[4,132] = 1.03
p = 0.32

F[4,132] = 0.35
p = 0.78

In figure 6, the regional EC averages in all frequency bands are displayed. In most 
bands, EC was highest in the parietal sensors, confirming the previously reported hub 
status of this region (Buckner et al., 2005; Tomasi and Volkow, 2011). In this band, tem-
poral sensor EC values were relatively low in both groups, and were even lower in AD 
patients. This indicates a diminishing network role of those regions in the AD patients 
in the theta band. In the beta band, parietal EC values were lower in AD while temporal 
and particularly occipital values were higher. In the gamma band, the hemispherical 
differences were marked, with lower frontal EC but higher EC values in the sensors over 
the left posterior hemisphere.
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Figure 6. Regional sensor space ECM results for all frequency bands, Alzheimer patients versus control 
subjects. Error bars indicate standard deviation.

Eigenvector centrality and cognition

Finally, we assessed correlations between regional EC values and MMSE score for the 
different frequency bands.  The results are displayed in table 3.

The left temporal regional EC in the theta band was strongly associated with MMSE 
score in AD patients (r = 0.67, p = 0.001) (see figure 7). In the other bands, left temporal 
EC showed the same trend but with weaker, non-significant correlations. Right central 
EC in the theta band was negatively correlated to MMSE score in AD patients (r = -0.66, 
p = 0.003), but not in the other bands.

In the lower alpha band, the pattern of EC values and changes in AD was similar. In the 
gamma band, right parietal EC and MMSE were strongly correlated (r = 0.68, p = 0.009). 
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Table 3. Relation between eigenvector centrality and MMSE in AD patients. Pearson’s bivariate 
correlations between regional eigenvector centrality (EC) values in ten sensor regions and mini mental 
examination (MMSE) score (AD patient group). Significant findings are printed in bold; * p < 0.05, ** p < 
0.01 (uncorrected). 

EC Delta Theta Lower 
Alpha

Higher Alpha Beta Gamma

Left Frontal 0.03 -0.02 -0.25 -0.25 0.09 -0.18

Right Frontal -0.30 0.05 -0.09 -0.28 -0.01 -0.29

Left Central 0.09 0.27 -0.14 0.15 -0.05 -0.14

Right Central -0.42 -0.66** -0.26 -0.16 -0.04 -0.16

Left Temporal 0.21 0.67** 0.55* 0.38 0.25 0.26

Right Temporal 0.13 -0.02 0.16 0.04 0.03 -0.21

Left Parietal 0.14 0.32 0.47 0.21 -0.33 -0.07

Right Parietal -0.06 -0.39 0.08 0.17 -0.06 0.62**

Left Occipital 0.22 0.19 0.00 0.02 0.12 0.30

Right Occipital 0.22 -0.04 -0.18 0.12 0.02 0.23

Discussion

In this first application of graph spectral analysis (GSA) to MEG patient data, we show that 
this technique is able to detect changes in resting-state functional network integrity of 
early-stage Alzheimer patients. Main outcomes are a general loss of network integrity 
in the AD patients, especially in the higher frequency bands, and a distinct pattern of 
regional connectivity changes that correlate with cognitive impairment. These findings 
are generally in line with previous literature and our hypotheses, although a few discrep-
ancies were encountered as well. 

Global network topology

The decreases in algebraic connectivity and spectral radius in several frequency bands 
in the AD patient group can be interpreted as a loss of network robustness and deviation 
from the optimal configuration for dynamic processing. This agrees with related graph 
theoretical studies in AD so far  (He et al., 2009; Stam, 2010), and supports the notion that 
in AD, functional disconnection between regions is taking place, leading to suboptimal 
cognitive processing. The finding that these different methods point in the same direc-
tion provides a degree of validation. Results of topological and spectral graph measures 
cannot be compared directly, but the decrease of algebraic connectivity can be taken 
as a stronger and theoretically sounder sign of network breakdown than the previously 
reported loss of small-world network structure. In the spectral approach no prior model 
(e.g. Watts and Strogatz, 1998), normalization of graph measures (e.g. clustering coef-
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ficient and path length) through comparison with random surrogate networks, or other 
additional methodological choices are required. 

Theoretically, the relation between network topology and network synchronizability 
is not straightforward  (Arenas et al., 2008), and increased network stability might also 
be pathological, for example by contributing to epileptic seizures. The prevalence of 
epilepsy in AD patients is higher than in the healthy population, and it is thought to 
be directly related to neurodegenerative pathophysiological processes  (Palop and 
Mucke, 2009; Larner, 2010). The observed eigenratio decrease (increase of 1/eigenratio 
in figure 5) in the gamma band in AD indeed suggests higher network synchronization 
stability in AD. In the theta band, the eigenratio increases in AD patients, suggesting 
lower network synchronization stability in this band. This shift, opposite to the gamma 
band findings, could also point to different network functions of the frequency bands, 
or to cross-frequency coupling effects; the theta-gamma band relation with regard to 
memory processes has been repeatedly described, and is very relevant in AD, where 
memory impairment is often the main symptom. On the other hand, the observed 
spectral gap decrease in the AD gamma band indicates that reaching a synchronized 
state will be harder for the network. This finding supports loss of large-scale network 
synchronizability in AD. 

Regional eigenvector centrality

In the present study, parietal sensors had the largest EC values in almost all frequency 
bands, characterizing them as main hub regions. This is in line with previous findings  
(Stam et al., 2009; Lo et al., 2010; Tomasi and Volkow, 2011), and with the presumed 
integrative function of the parietal association areas  (Mesulam, 1998). In a recent fMRI 
study, EC was applied to resting-state voxel-based fMRI networks of healthy subjects to 
explore differences between individuals in various satiety states  (Lohmann et al., 2010). 
Besides confirming the hub status of the posterior cortical area, Lohmann et al stress 
advantages like the parameter- and assumption-free nature of eigenvector centrality, 
as well as its computational efficiency compared to other centrality algorithms when 
investigating very large networks. 

An intriguing recent insight that has come from network analysis in AD is that hub 
regions (especially parietal) are selectively vulnerable, and overlap strongly with regions 
of amyloid deposition, hypometabolism and atrophy  (Buckner et al., 2005; Drzezga 
et al., 2011). The vulnerability of parietal hub areas was reflected in our ECM findings 
by a parietal EC decrease in higher frequency bands and an increase in lower bands, 
i.e. a loss of high frequency centrality. In addition, a notable regional EC change in AD 
took place in the theta band in both temporal areas, which already have a relatively 
low EC in healthy controls. On the one hand this might be a sign of the known (medio-)
temporal atrophy and dysfunction in AD, and fit the observed decrease in theta band 
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synchronizability. However, if a major part of the temporal connections are to and from 
the vulnerable parietal hub areas, the EC decrease may be mainly due to the weakening 
parietal hub nodes. Thus, a possible explanation of this difference is the more indirect 
character of EC compared to degree centrality.

The striking correlation that was found in the theta band between left temporal EC 
and MMSE score (see table 3 and figure 7) suggests that the drop in network centrality 
of the left temporal region in AD patients reflects the severity of cognitive symptoms. 
Overall, only few clear correlations were found between regional EC and MMSE score, 
even without correction for multiple testing. Nevertheless, the temporal lobe associa-
tion in the theta band is remarkably strong, and might hold most promise as a functional 
(bio-)marker of AD progression. It is well known that changes in theta activity are among 
the earliest neurophysiological signs to accompany AD, and in previous studies left tem-
poral lobe characteristics specifically have been suggested as AD disease progression 
markers  (Fernandez et al., 2003; Osipova et al., 2005; Gianotti et al., 2007).

Limitations and future directions

Several potential limitations of this study should be taken into account. First of all, 
methodological choices might have influenced our outcome measures and subsequent 
interpretations: the use of resting-state data, the influence of volume conduction in MEG 
sensor space analysis, and epoch selection. Another limitation could be our choice for 
the SL as functional connectivity measure. Although we think it is the most appropriate 
measure for our purpose given earlier SL-based studies, different functional connectivity 
measures could lead to different results. The influence of coupling measures on sub-
sequent graph analysis results has not yet been investigated in a systematic way, but 
since a similar pattern of functional connectivity loss has been reported using different 
measures, we feel confident that the observed group differences cannot be explained 
by this choice. In this exploratory study, we opted for several commonly used and well-
understood graph spectral measures that describe relevant properties with concern to 
brain network analysis. However, other measures, for example describing network clus-
tering properties, might be of special interest in future studies (Bialonski and Lehnertz, 
2006). Also, it would be interesting to compare the findings obtained in this study with 
graph spectral results based on different functional connectivity measures, task-based 
datasets or disease conditions.

	 From a more clinical perspective, several possible limiting factors might have 
been present: modest sample size, comorbidity, disease heterogeneity and the use of 
psychoactive medication, as described in the method section. However, since the oc-
currence of these phenomena were infrequent and distributed across both groups, it 
is not likely that they had a large influence on the observed group differences. Persons 
possessing any of these factors were not identified as outliers.
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Conclusion

Graph spectral analysis detects changes in resting-state functional network integrity of 
mild to moderate Alzheimer patients. The changes in AD patients point towards less 
efficient network configuration for dynamic processing. Moreover, the relation between 
loss of temporal lobe centrality and cognitive impairment in AD indicates potential 
value for tracking disease course. These clinically relevant results, based on a solid, 
computationally efficient theoretical background that does not require a priori assump-
tions or arbitrary parameter settings, make graph spectral analysis in our opinion a valid 
approach for exploring brain network integrity. 
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Abstract

Brain connectivity studies have revealed that highly connected ‘hub’ regions are par-
ticularly vulnerable to Alzheimer pathology: they show marked amyloid-β deposition 
at an early stage. Recently, excessive local neuronal activity has been shown to increase 
amyloid deposition. In this study we use a computational model to test the hypothesis 
that hub regions possess the highest level of activity and that hub vulnerability in Al-
zheimer’s disease is due to this feature. Cortical brain regions were modeled as neural 
masses, each describing the average activity (spike density and spectral power) of a 
large number of interconnected excitatory and inhibitory neurons. The large-scale net-
work consisted of 78 neural masses, connected according to a human DTI-based cortical 
topology. Spike density and spectral power were positively correlated with structural 
and functional node degrees, confirming the high activity of hub regions, also offering 
a possible explanation for high resting state Default Mode Network activity. ‘Activ-
ity dependent degeneration’ (ADD) was simulated by lowering synaptic strength as a 
function of the spike density of the main excitatory neurons, and compared to random 
degeneration. Resulting structural and functional network changes were assessed with 
graph theoretical analysis. Effects of ADD included oscillatory slowing, loss of spectral 
power and long-range synchronization, hub vulnerability, and disrupted functional 
network topology. Observed transient increases in spike density and functional con-
nectivity match reports in Mild Cognitive Impairment (MCI) patients, and may not be 
compensatory but pathological. In conclusion, the assumption of excessive neuronal 
activity leading to degeneration provides a possible explanation for hub vulnerability 
in Alzheimer’s disease, supported by the observed relation between connectivity and 
activity and the reproduction of several neurophysiologic hallmarks. The insight that 
neuronal activity might play a causal role in Alzheimer’s disease can have implications 
for early detection and interventional strategies.

Author Summary

An intriguing recent observation is that deposition of the amyloid-β protein, one of the 
hallmarks of Alzheimer’s disease, mainly occurs in brain regions that are highly con-
nected to other regions. To test the hypothesis that these ‘hub’ regions are more vulner-
able due to a higher neuronal activity level, we examined the relation between brain 
connectivity and activity in a computational model of the human brain. Furthermore, 
we simulated progressive damage to brain regions based on their level of activity, and 
investigated its effect on the structure and dynamics of the remaining brain network. We 
show that brain hub regions are indeed the most active ones, and that by damaging net-
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works according to regional activity levels, we can reproduce not only hub vulnerability 
but a range of phenomena encountered in actual neurophysiological data of Alzheimer 
patients as well: loss and slowing of brain activity in Alzheimer, loss of synchronization 
between areas, and similar changes in functional network organization. The results of 
this study suggest that excessive, connectivity dependent neuronal activity plays a role 
in the development of Alzheimer, and that the further investigation of factors regulating 
regional brain activity might help detect, elucidate and counter the disease mechanism.

Introduction

Like many other complex networks, the human brain contains parts that are better 
connected to the rest than others: ‘hub’ regions. Evidence is increasing that a collection 
of brain hub regions forms a ‘structural core’ or  ‘connectivity backbone’ that facilitates 
cognitive processing  [1,2,3]. Brain hub regions are mainly located in heteromodal asso-
ciation cortices (which integrate information coming from primary cortices), and show 
a striking overlap with the Default Mode Network  [4,5]. Furthermore, their function has 
been related to fundamental cognitive features such as consciousness, memory, and IQ  
[6-10]. The central role and large responsibility of hub network regions has an obvious 
downside: hub damage can have a dramatic impact on network integrity  [11,12]. One 
of the most intriguing recent insights in this regard has emerged from network-related 
studies in the field of Alzheimer’s disease (AD): cortical hub areas turn out to be ex-
ceptionally vulnerable to amyloid deposition, hypometabolism and, eventually, atrophy  
[13-15]. This fascinating link between connectivity and susceptibility to AD pathology 
deserves further study: what could be causing the hub vulnerability?

The prevailing amyloid-cascade hypothesis of AD states that interstitial amyloid-beta 
proteins exert a toxic effect on surrounding neurons and synapses, thereby disturbing 
their function and eventually causing dementia  [16]. However, this theory does not 
provide an explanation for the selective vulnerability of highly connected hub areas. 
Could an activity-driven mechanism, i.e. hub areas suffering most damage due to their 
higher connectivity and activity level have any legitimacy? Chronic, excessive metabolic 
demand can lead to tissue damage in many organs, and the human brain has extraordi-
nary energy demands. Furthermore, major AD risk factors such as age, ApoE genotype, 
vascular damage and female gender have all been linked to an increased burden on 
neuronal metabolism, activity and plasticity  [17-19]. Recently, direct evidence was 
presented that excessive neuronal and/or synaptic activity leads to amyloid deposition  
[20,21,22]. However, whether this relation between neuronal activity and AD pathology 
exists in humans, and whether hub regions are indeed the most active areas of the brain 
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has not yet been explored. We speculated that an ‘activity dependent degeneration’ 
scenario, in which hub regions are preferentially affected due to high neuronal activity 
levels, could be a plausible disease mechanism.

To test this hypothesis, a model is required that incorporates both large-scale connectiv-
ity as well as (micro-scale) neuronal activity. The macroscopic level is needed to provide 
a realistic structural human brain topology, including hub regions. Topological maps 
are well within reach nowadays, since an increasing amount of imaging data describ-
ing the human connectome is becoming available  [1,23,24]. Imposed on this structural 
framework, a realistic representation of network dynamics is required. For this purpose, 
so-called neural mass models (NMMs) can be employed  [25-27]. Here, each neural mass 
reflects activity in a brain region by representing a large population of interconnected 
excitatory and inhibitory neurons, characterized by an average membrane potential and 
spiking density. Multiple neural masses can be coupled according to any desired struc-
tural topology (e.g. human anatomical data) to form a dynamic brain model, which can 
then be employed to investigate the relationship between connectivity and neuronal 
activity  [28-30]. 

Structural (anatomical) connectivity and functional (dynamical) connectivity are strong-
ly related, but not always in a straightforward way  [5,31-33]. It has been shown that 
macroscopic models of mammalian brain networks combined with graph theoretical 
analysis may explain the topology of functional networks at various time scales  [34-36]. 
To simulate disease, macroscopic models and graph theory have been used to predict 
the structural and functional consequences of various types of lesions on brain networks  
[11,12,30]. Similarly, the gradually progressive neuronal damage of neurodegenerative 
processes such as AD can be modeled using this approach, and analyzed with graph 
theoretical tools [14,37-39]. The novel aspect of the present study is that the degenera-
tive damage is based on neuronal activity itself. 

In short, by simulating neuronal dynamics on a network that is modeled on a realistic 
human cortical connectivity structure we explore the relation between large-scale 
connectivity and neuronal activity in normal and abnormal conditions. In the present 
study we use this approach to a) establish that cortical hub regions, because of their high 
connectivity, possess the highest intrinsic neuronal activity levels, and b) demonstrate 
that ‘Activity Dependent Degeneration’ (ADD), in which brain connectivity is damaged 
based on local neuronal activity levels, may serve as a computational model of AD that 
offers a potential explanation for hub vulnerability.
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Results

Experiment 1: relation between connectivity and activity 

To assess whether the most highly connected cortical regions also showed the highest 
levels of neuronal activity, we plotted spike density and total power for all regions against 
the structural degree of nodes (figure 1A). The group of 13 regions with the highest 
(‘very high’ category in the figure) structural degree were defined as hubs; the remaining 
65 regions were labeled as non-hubs. In non-hubs, spike density actually showed a weak 
negative relation with structural degree, but in hubs clearly higher levels were found 
compared to non-hubs (p<0.01). Furthermore, the total power of hubs was significantly 
higher than that of non-hubs (p<0.0001). Figure 1B shows the same relations, but now 
plotted for all regions, and for three different initial coupling strengths. When S=1.5, the 
correlations between structural degree and spike density (r=0.35) and structural degree 
and total power (r=0.94) indicate that especially the link between structural degree and 
total power is strong. For higher coupling strengths between the NMMs (S=2.0), a strong 
positive correlation between structural degree and spike density was observed as well 
(r=0.86). Thus, although coupling strength has an influence on these results, overall the 
positive relation between structural connectivity and neuronal activity is apparent. 

Figure 1: Relation between structural degree and neuronal activity
A: Six bins with ascending mean structural degrees are plotted against their average spike density and 
total power values. Nodes in the ‘very high’ degree bin were defined as hubs. Coupling strength (S) 
between neural masses was set to 1.5. Error bars indicate standard deviation within each bin. B: Similar 
plots as in the left panel, but for every region individually, and for three different coupling strengths S (see 
Supporting information, section 3).
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Since activity level might also be influenced by a nodes functional role rather than 
its structural connectivity status, we performed comparisons between structural and 
functional degree (sum of all weighted functional connections of a node) of all nodes 
for the common frequency bands (delta 0-4 Hz, theta 4-8 Hz, lower alpha 8-10 Hz, 
higher alpha 10-13 Hz, beta 13-30 Hz, gamma 30-45 Hz). Results of this analysis and of 
direct comparisons between functional degree and neuronal activity are reported in 
Supporting information section 1. In most bands, clear positive correlations were found, 
demonstrating that functional hub regions generally have high neuronal activity levels 
as well. Table 1 shows all 78 regions ranked by structural degree, with their functional 
degree, total power and spike density levels.

Table 1. Cortical regions; degree of connectivity and level of activity.

Cortical region
Structural 

degree
Functional  

degree*
Spike density

Total 
power

Precuneus R 20 0.034 ±0.004 435 420

Precuneus L 19 0.034 ±0.003 426 408

Middle Occipital Gyrus L 17 0.033 ±0.004 428 447

Superior Frontal Gyrus, medial R 13 0.035 ±0.004 395 228

Calcarine fissure and surrounding cortex L 13 0.035 ±0.004 408 296

Middle Temporal Gyrus L 13 0.034 ±0.004 404 275

Superior Occipital Gyrus R 13 0.032 ±0.005 410 342

Calcarine fissure and surrounding cortex R 13 0.032 ±0.005 412 352

Precentral Gyrus L 13 0.031 ±0.005 403 312

Lingual Gyrus R 12 0.032 ±0.004 403 203

Superior Frontal Gyrus, medial L 12 0.032 ±0.005 395 226

Middle Occipital Gyrus R 12 0.031 ±0.004 404 285

Precentral Gyrus R 12 0.03 ±0.004 398 278

Postcentral Gyrus L 11 0.033 ±0.004 396 227

Superior Frontal Gyrus, dorsal L 11 0.032 ±0.005 396 242

Postcentral Gyrus R 11 0.031 ±0.004 395 261

Superior Frontal Gyrus, dorsal R 11 0.03 ±0.005 396 234

Superior Temporal Gyrus R 10 0.034 ±0.004 397 127

Supplementary motor area R 10 0.034 ±0.005 398 188

Cuneus R 10 0.034 ±0.004 398 276

Superior Occipital Gyrus.L 10 0.027 ±0.004 398 264

Insula L 9 0.035 ±0.006 395 143

Inferior Temporal Gyrus L 9 0.033 ±0.004 395 184

Lingual Gyrus L 9 0.033 ±0.005 398 205

Supplementary motor area L 9 0.032 ±0.005 397 131
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Supramarginal Gyrus R 9 0.032 ±0.005 393 175

Angular gyrus R 9 0.03 ±0.006 391 200

Middle Temporal Gyrus R 9 0.03 ±0.005 393 177

Fusiform Gyrus L 9 0.03 ±0.005 395 167

Superior Parietal Gyrus R 9 0.029 ±0.005 393 207

Middle Frontal Gyrus, R 9 0.029 ±0.004 400 61

Inferior Frontal Gyrus, orbital part L 9 0.028 ±0.006 398 130

Anterior Cingulate and paracingulate Gyri L 9 0.028 ±0.006 395 140

Cuneus L 9 0.028 ±0.004 397 86

Superior Frontal Gyrus, medial orbital R 8 0.033 ±0.004 393 109

Angular gyrus L 8 0.032 ±0.005 392 232

Superior Parietal Gyrus L 8 0.03 ±0.004 395 163

Inferior Frontal Gyrus, opercular part.R 8 0.029 ±0.006 400 64

Superior Frontal Gyrus, orbital part L 8 0.028 ±0.005 395 122

Superior Temporal Gyrus L 8 0.028 ±0.004 402 74

Middle Frontal Gyrus L 8 0.028 ±0.005 394 123

Temporal Pole: middle temporal gyrus R 8 0.026 ±0.005 396 113

Paracentral Lobule L 8 0.026 ±0.005 399 101

Anterior Cingulate and paracingulate gyri R 8 0.026 ±0.004 394 143

Fusiform Gyrus R 8 0.024 ±0.005 394 145

Superior Frontal Gyrus, medial orbital L 7 0.032 ±0.003 390 120

Median Cingulate and paracingulate gyri R 7 0.031 ±0.005 402 69

Inferior Occipital Gyrus L 7 0.03 ±0.005 397 127

Paracentral Lobule R 7 0.029 ±0.005 403 63

Inferior Frontal Gyrus, opercular part L 7 0.028 ±0.006 405 31

Supramarginal Gyrus L 7 0.028 ±0.006 398 75

Gyrus Rectus L 7 0.027 ±0.004 394 63

Rolandic operculum L 7 0.027 ±0.005 398 110

Inferior Frontal Gyrus, triangular part L 7 0.027 ±0.004 396 101

Superior Frontal Gyrus, orbital part R 7 0.026 ±0.004 405 37

Inferior Parietal L 7 0.026 ±0.004 402 42

Inferior Temporal Gyrus R 7 0.015 ±0.003 394 109

Inferior Occipital Gyrus R 6 0.031 ±0.004 409 23

Olfactory cortex R 6 0.025 ±0.004 396 134

Parahippocampal Gyrus L 6 0.025 ±0.006 404 47

Temporal Pole: middle temporal gyrus L 6 0.025 ±0.004 402 45

Inferior Parietal R 6 0.025 ±0.005 394 112

Median Cingulate and paracingulate gyri L 6 0.024 ±0.004 405 43

Parahippocampal Gyrus R 6 0.023 ±0.005 399 60

Rolandic operculum R 6 0.023 ±0.003 410 35

Posterior cingulate Gyrus L 6 0.021 ±0.003 404 43
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Experiment 2: Activity Dependent Degeneration (ADD)

Effect of ADD on structural network integrity
Since, according to our hypothesis, ADD lowers connectivity based on activity level, it 
was expected to disrupt both structural and functional networks. First we investigated 
the effect of ADD on the structural network, and whether it had different effects on hubs 
versus non-hub regions. In ADD, every time-unit represents a small amount of damage 
to the system, so as to simulate gradual, cumulative degeneration. However, the amount 
of real, absolute time that is required for these successive steps is not known. Time as 
presented in these figures should therefore not be interpreted as days or years, but as 
arbitrary units of undetermined length. Figure 2A shows the decrease of the structural 
connectivity for three time points in all regions. The normalized node strength, which 
is the ratio of the node strength after ADD over the original node strength, is plotted 
for different time points. At baseline (T=0, not shown) normalized node strength is 1 
by definition. Over time node strength decreases, and, as hypothesized, particularly 
in hub nodes, illustrated by the declining slope of the lines. The difference in normal-
ized node strength between hubs and non-hubs is highly significant for all time points 
shown (p<0.001). On the contrary, in the random degeneration (RD) model, there was 
no difference between hubs and non-hubs in normalized node strength over time (see 
figure 2B).

Inferior Frontal Gyrus triangular part R 6 0.02 ±0.005 404 45

Inferior Frontal Gyrus, orbital part R 5 0.024 ±0.006 404 31

Insula R 5 0.021 ±0.004 404 17

Temporal Pole: superior temporal gyrus L 5 0.018 ±0.003 405 29

Middle Frontal Gyrus, orbital part L 5 0.017 ±0.004 390 163

Posterior Cingulate Gyrus R 5 0.013 ±0.002 397 225

Middle Frontal Gyrus, orbital part R 4 0.022 ±0.004 406 19

Gyrus Rectus R 4 0.014 ±0.002 405 29

Olfactory cortex L 4 0.013 ±0.003 400 37

Temporal Pole: superior temporal gyrus R 3 0.017 ±0.003 403 17

Heschl Gyrus L 2 0.012 ±0.002 405 9

Heschl Gyrus R 1 0.012 ±0.002 403 6

List of human cortical regions included in the model, ranked in order of descending structural degree. 
Regions printed in bold were classified as hub regions. * Functional degree is based on broadband (0.5 – 
45 Hz) functional connectivity. S (coupling strength) was set at 1.5; different values of S produced different 
absolute values but no changes in functional degree rank. T (time delay) was kept constant at 0.002 s for 
all experiments (see Supporting information, section 2). Averaged values and standard deviations over 20 
runs of the NMM.
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Figure 2: Effect of ADD on structural degree
A: All cortical regions binned according to initial structural degree from low to high values, and their 
average normalized node strengths at different stages of activity dependent degeneration (ADD). T = 
time. Error bars indicate standard error of the mean. B: All cortical regions binned according to initial 
structural degree from low to high values, and their average normalized node strengths at different stages 
of random degeneration (RD). T = time. Error bars indicate standard error of the mean.

Effect of ADD on neuronal activity
Next, we studied the effect of ADD on network dynamics. When visually inspecting the mod-
el-generated data it was apparent that there were notable changes in oscillation amplitude 
over time. The power spectrum of hub regions initially showed much higher alpha power 
than in non-hub areas, and a surprising slightly lower alpha peak frequency (see Supporting 
information section 4). As expected, total power decreased over time (see figure 3A). Hubs 
started at a higher mean power level (p<0.0001), but declined more rapidly than non-hubs, 
reaching bottom levels at approximately the same moment. Loss of total power in the ADD 
model was stronger than in RD, especially in hubs; for all time points (except T=0) hub power 
under ADD was significantly lower than under the RD regime (p<0.01). The initial positive 
relation between structural degree and total power disappeared accordingly (see figure 3B).
We subsequently performed a similar analysis for spike density changes over time due 
to ADD and RD (see figure 4A and 4B). At T=0, the spike density in hubs was higher than 
in non-hubs (p=0.01). In the early stage, we found an unexpected rise of spike density 
in both ADD and RD, which was stronger in hubs (maximum spike density increase was 
larger, p<0.0001). However, the maximum spike density in hubs under ADD was reached 
significantly earlier than in non-hubs (average T=52 versus T=60, p<0.0001), while peaks 
were reached at similar times under RD.
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Figure 3: Effect of ADD on total power
 A: Average total power of hub and non-hub regions plotted over time, for both the ADD and RD 
procedure. Error bars indicate standard error of the mean. B: Correlation between structural degree and 
total power for all regions at different time points during ADD.

Figure 4: Effect of ADD on spike density
A: Average level of spike density during ADD is plotted for hubs and non-hubs. Error bars indicate 
standard deviations. B: Average level of spike density during RD is plotted for hubs and non-hubs. Error 
bars indicate standard deviations.



Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer’s Disease 133

Effect of ADD on functional network topology
Since we expected ADD to affect functional network topology as well, we examined 
changes over time in the synchronization likelihood, as well as basic graph measures 
like average clustering coefficient, characteristic path length, and modularity. Since data 
generated by the NMM is most reliable in the alpha band, and AD-related functional 
network changes have most consistently been found in the lower alpha band, we report 
just the results of this representative band in figure 5. Like spike density, functional con-
nectivity strength first increased before a rapid breakdown occurred, which reached bot-
tom level at around the same time point as total power (described above). The average 
clustering coefficient decreased, while the characteristic path length fluctuated around 
the same level through the ADD process (although hubs and non-hubs showed different 
behavior during the first phase, see figure 5). The ratio between these two measures 
became smaller, indicating that the balance between global and local connectivity and 
thus the small-world network topology was disturbed and had become more random. 
Global modular organization, as expressed by Newman’s index, decreased before reach-
ing a stable, lower level.

Figure 5: Effect of ADD on functional connectivity and network topology.
Mean levels of synchronization likelihood, modularity, clustering coefficient and path length during ADD 
are plotted for hubs and non-hubs. Error bars indicate standard deviations.
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Discussion

In this study we used a computational model with 78 dynamic neural masses coupled 
according to realistic human cortical topology to investigate the relation between con-
nectivity and neuronal activity. We find that cortical hub regions have the highest level 
of intrinsic activity, and that the minimal assumption of higher local neuronal activity 
leading to more severe neurodegeneration can predict a range of AD hallmarks observed 
in patient data such as oscillatory slowing, a subsequent increase and breakdown of 
functional connectivity, and a loss of functional network integrity. These results suggest 
an ‘activity dependent degeneration’ (ADD) hypothesis of AD, and below we will discuss 
our findings and possible consequences in greater detail.

Hub status and activity level

Our first aim was to find out whether the level of activity in a region is related to its 
degree of structural connectivity. An expected positive correlation was indeed found 
in repeated experiments across all degrees of connectivity (see figures 1, 3, and 4): 
structural hub regions possess the highest average power and spike densities. As can be 
judged from figure 1, an exception is the relation between structural connectivity and 
spike density for low values of NMM coupling (S). This result indicates that the relation 
between connectivity and activity might be more complex than we expected. Neverthe-
less, similar analysis performed using functional connectivity results (see figure S1) led 
to clear positive correlations in the large majority of cases. It should further be noted 
that there is no unique definition of hub status, and in this experiment (and the rest of 
the study) we adhered to the pragmatic choice of taking a selection of nodes (n=13) 
with the highest structural degree. However, since connectivity and activity are clearly 
positively related in regions with higher structural degrees, we do not believe that a 
different hub definition would have led to a different interpretation. 

Still, although high neuronal activity in hub regions was a solid finding that might 
have been expected intuitively, it should ultimately be verified in experimental data. As 
can be judged from table 1, many Default Mode Network (DMN)-related regions pos-
sess a high degree of connectivity and activity. The well-documented high resting-state 
activity level of the DMN is therefore in line with our findings  [5]; however, instead of 
being attributed to ongoing cognitive processing or mental phenomena like introspec-
tion, high resting-state activity in the DMN might actually be (partially) explained by the 
underlying degree of structural and functional connectivity 
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Figure 6: The relation between connectivity and activity at different stages of ADD.
The proposed relation between connectivity and activity is summarized for three different stages of 
ADD. Structural hubs have a higher baseline intrinsic activity, making them most susceptible to ADD. 
The second phase might represent the ‘Mild Cognitive Impairment’ (MCI) stage; structural connectivity 
declines steadily, but functional connectivity, power and spike density initially increase, leading to a 
pathologic spiral of increasing activity and metabolic burden in progressively weaker neurons. In the third 
“AD” phase, the damaged neurons and decreasing structural connectivity can no longer support the high 
demands, and the network collapses.

Activity dependent degeneration (ADD)

Based on the findings in our first experiment, we expected that ADD would probably 
preferentially target hub regions, since they possessed the highest level of activity. 
Analyses of both structural and functional connectivity changes due to ADD seem to 
be in agreement with this expectation (see figures 2-5). Furthermore, total (or absolute) 
power decreases rapidly, largely accounted for by weakening of hub regions, and the 
initial correlation between degree and power is lost (figure 3). Thus, large-scale brain 
connectivity loses its efficient ‘hub’ topology in ADD, like in AD.

Surprisingly, the steady loss of power is accompanied by an initial rise of spike density 
on average (see figure 4), before a final oscillatory slowing sets in. This effect is stronger 
in hubs; spike density rises more quickly, reaches its peak rate sooner, and seems to 
slow down more rapidly. One explanation for the increase in spike density observed in 
our results is neuronal disinhibition. In fundamental neuroscience disinhibition is a well-
known phenomenon and it is widely accepted that inhibitory interneurons have a large 
influence on oscillatory behavior [40]. Besides damaging excitatory connections, ADD 
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impairs connectivity to and from inhibitory neurons within the neural masses, and the 
resulting loss of inhibition seems to be a dominant influence on spike density in the first 
stage. This then leads to a vicious spiral of increasing activity, more activity-dependent 
damage, etc. until the weakening network can no longer support an increase in spike 
density (the inter-mass excitatory coupling weakens substantially, which leads to break-
down of the system, see also figure 6). The eventual spike density decrease due to ADD 
resembles the oscillatory slowing known from AD neurophysiologic literature  [41,42].

Several authors have argued for a prominent role of neuronal disinhibition in AD patho-
physiology: for example, Gleichmann et al. propose a process they call ‘homeostatic 
disinhibition’, which is based on a different underlying mechanism but might explain 
the higher prevalence of epilepsy that is seen in AD, reduced gamma band activity, 
and, interestingly, the increase in neuronal activity as measured by fMRI [43]. Schmitt 
argues that AD is accompanied by a loss of inhibition that leads to alterations in calcium 
homeostasis and excitotoxicity, respectively [44]. Olney et al. hypothesize that a disin-
hibition syndrome caused by hypoactive NMDA receptors triggers excitotoxic activity 
and widespread neurodegeneration [45].  Palop & Mucke suggest that amyloid itself 
causes dysfunction of inhibitory interneurons causing an increase in neuronal activity 
[46,47], possibly also accounting for the higher prevalence of epileptic activity in AD  
[48]. Kapogiannis & Mattson review reports that in aging excitatory imbalance is due to 
a decrease in GABA-ergic signaling, and that this mechanism is exacerbated in AD [19]. 

An early but transient rise was also found in functional connectivity results (see figure 
5), and interestingly, this is in line with experimental data of Mild Cognitive Impairment 
(MCI) patients, where increased functional connectivity levels are often interpreted as 
a compensatory mechanism  [49-52]. However, this increase of functional connectivity 
has not been directly related to cognitive improvement, and according to our model, it 
might well be a part of the degeneration process itself.

Finally, the ADD induced changes in functional network topology, such as the weaken-
ing of small-world structure and modularity (see figure 5), are in line with recent findings in 
resting-state EEG and MEG studies in AD  [14,39,53-55]. In recent years, brain disconnectivity 
and disturbed network topology has been observed in an increasing number of disorders 
(for example schizophrenia, multiple sclerosis, brain tumor, autism, epilepsy)  [56-59]. It is 
conceivable that different disease mechanisms and types of network damage (for example 
extensive non-hub network damage) could lead to a similar situation of hub overload and 
decay. Computational models like the one described here could be employed to investigate 
various underlying pathologies and to examine the differences between them. Several 
recent studies support the notion that node properties such as degree and centrality may 
play a crucial role in the pathophysiology of degenerative brain disease [60-62].
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Alzheimer’s disease: consequence of excessive hub activity?

The results of this study suggest that hub regions are vulnerable due to their intrinsically 
high activity level. The assumption of activity dependent degeneration leads to hub vul-
nerability along with many neurophysiologic features of AD (i.e. as found in quantitative 
EEG and MEG literature). A recently conducted large fMRI study demonstrated that highly 
connected cortical regions like the precuneus are even stronger hubs in females than in 
males: could this perhaps explain the higher levels of early amyloid deposition ánd the 
higher prevalence of AD in women  [63,64]? The computational model used in this study 
offers a possible mechanism by which excessive neuronal activity in hubs might lead to 
the observed macro-scale disruption of brain connectivity and dynamics in AD.

In addition to the presumed role of disinhibition mentioned in the previous paragraph, 
a prominent role of excessive neuronal activity in AD pathogenesis has been suggested 
before: several studies have demonstrated a direct link between neuronal activity and the 
development of amyloid plaques in transgenic mice  [20,21,22]. Regions that are most 
active during resting-state show the most outspoken AD-related pathology [4,5,13]. 
Excessive hippocampal activity is related to cortical thinning in non-demented elderly 
persons, is present in MCI patients, and is related to neurodegeneration in AD [49,65,66]. 
Finally, known risk factors for AD such as genetic profile, age, vascular damage, or com-
mon comorbidities like sleep disorders and epilepsy, all predispose to excessive activity 
and a subsequent burden on metabolism and plasticity  [17,18,66-68]. On the other hand, 
protective factors like high level of education and sustained cognitive activity might 
relieve the burden on hub regions due to frequent activation of task-related circuits, and 
accompanying DMN deactivation. Summarizing, vulnerability of cortical hub regions due 
to their high activity levels may be aggravated or alleviated by the presence of one or 
more predisposing or protective factors, respectively (see figure 7). 
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Figure 7: The role of excessive neuronal activity in Alzheimer’s disease.
Excessive neuronal activity might be a common pathway through which many of the known risk factors 
enlarge the chance to develop Alzheimer pathology. Hub regions are most likely to display activity-
dependent pathology, since they have the highest intrinsic neuronal activity (which is further amplified in 
the initial phase of ADD).

This line of reasoning implies that changes in brain activity and connectivity are already 
involved in the very early stages of AD pathology. In this regard, it is interesting to note 
that an increasing number of studies show that changes in activity and functional con-
nectivity can be detected before cognitive complaints arise or pathological levels of 
amyloid are detected with PET and CSF analysis  [18,69-73].

Although activity dependent degeneration is quite different from amyloid-induced 
damage, they need not be mutually exclusive: chronic, excessive activity might lead 
to amyloid deposition, which in turn causes aberrant activity and neuronal damage: a 
pathological cycle with different stages (see also figure 6). Relatively small increases of 
extracellular amyloid-beta can increase neuronal activity, especially in neurons with low 
activity, whereas higher levels cause synaptic depression  [74,75]. Palop and Mucke em-
phasize the role of inhibitory interneuron dysfunction, leading to hypersynchronization  
[47]. In conclusion, although these studies provide compelling evidence for a prominent 
role of neuronal activity, our predictions that hub regions might form the weakest links 
in AD pathogenesis should be tested in further studies.

Modeling Alzheimer’s disease

Several recent studies use similar computational modeling approaches to examine AD 
related neurophysiological phenomena: Bhattacharya et al. focus on thalamo-cortico-
thalamic circuitry and its relation with alpha band power in AD [38]. By varying the 
synaptic strengths in the thalamic module of the model they find that especially the 
connectivity of synaptic inhibitory neurons in the thalamus has a large influence on 
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alpha power and frequency. Pons et al. use a neural mass model and human EEG data to 
investigate the influence of structural pathways on functional connectivity in the aging 
brain and pre-clinical stages of AD  [37]. Findings in line with our present results are the 
higher functional connectivity values in MCI and the relation between structural and 
functional connectivity. An increase in functional connectivity and network randomness 
during a memory task was found by Buldú et al. in a MEG study of MCI patients [76]. 
Interestingly, the authors also provide a network degeneration model which might 
explain these observations. The combination of neural mass modeling and graph theory 
was used in a recent study from our group [36]. This study explores the manifestation 
of modularity in developing networks and investigates the effect of more acute lesions 
on network dynamics. The gradual recovery of functional network characteristics that 
was observed after lesions raises the question whether and to what extent similar 
mechanisms play a role in neurodegenerative damage; this should be subject of further 
study. To describe functional network modularity, the same algorithm and heuristic was 
used as in the present study. The computational models used in these studies provide 
a framework to address different questions and hypotheses concerning brain disease, 
e.g. different functional lesions. A novel aspect of the approach in the present study is 
that a single hypothesis (ADD) is proposed as main pathophysiological mechanism of 
AD. Comparison to a ‘random degeneration’ (RD) model provides further support for the 
ADD hypothesis, but does not rule out the possibility that other plausible degenerative 
models exist. 

Methodological issues

Various methodological choices might have affected our results, and should be taken 
into account when interpreting them. First, although the DTI-derived connectivity ma-
trix that served as the basis of our model is in our opinion a solid overall large-scale 
representation of human cortical connectivity, it was based on data of healthy young 
adults [24]. Since AD mainly affects the aging population, and since it has been shown 
that structural connectivity is altered during aging [77], results might have been differ-
ent if structural connectivity data of older subjects had been implemented. However, 
the major hub regions seem largely independent of age, justifying our approach that 
mainly focuses on hub versus non-hub differences. Furthermore, we now know that AD 
affects many people below the age of 65, and that AD pathology is presumably already 
present for decades before initial symptoms appear. In a similar way we expect that 
individual variability in structural connectivity will not have had a major influence on 
our present approach, since major hub regions appear to be consistent across studies 
[3,64]. Although the computational model used here could be refined in many ways, e.g. 
by implementing a larger number of regions, assigning different weights to structural 
connections, using DSI-derived data, correcting for spatial scale and/or DTI biases, or by 
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using more elaborate and detailed graph analysis, we believe that this would not have 
affected our main outcome dramatically, since comparing characteristics of hub and 
non-hub cortical regions does not necessarily require a high level of detail. By keeping 
the model and hypotheses as simple as possible, it might be easier to discover or test 
underlying basic principles and mechanisms of degeneration.

The main motivation to use an NMM network of this size was the observation that 
topographical maps and atlases of the human cerebral cortex of this order of magnitude 
are quite common in macroscopic structural and functional connectivity studies (for an 
overview, please refer to [39,56-58]. Also, since EEG and MEG studies have comparable 
network sizes (21-300 sensors), this is a fairly realistic spatial resolution for NMM-gener-
ated dynamics. Two relevant references are recent computational modeling studies by 
Deco et al. [27] and Pons et al. [37].

Varying the structural coupling strength S in our neural mass model can lead to differ-
ent results, and therefore we have reported its influence on our outcomes. Similarly, the 
arbitrary ‘loss’-rate parameter of the ADD function will affect the speed of the degenera-
tion process. However, since we were mainly concerned with a topological ‘hub versus 
non-hub’ comparison, the absolute rate of degeneration was of minor importance for 
this study. Moreover, loss-rates were equally applied to all connections; network distri-
bution was not selectively influenced by these parameters. 

Future directions

Observations from this study that could be explored further include ADD-induced 
changes in structural network topology, the relation between spike density and ana-
tomical region, and the lower alpha peak frequency in hub regions (see Text S1 section 
4). Predictions from our model, especially the close link between local neuronal activity 
and large-scale connectivity should be verified in longitudinal clinical studies, prefer-
ably of normal aging as well as patients with subjective memory complaints (SMC), Mild 
cognitive impairment (MCI) and AD. To assess structural and functional connectivity 
as well as large-scale neuronal activity, a combination of DTI and MEG might be the 
most appropriate method. Source space analysis of MEG data may help to develop to-
pologically accurate neural mass models. On a fundamental level, the relation between 
neuronal connectivity, activity and pathology should be further explored in animal 
models. Interestingly, the relation between regional activity and large-scale functional 
connectivity has recently also addressed with respect to schizophrenia [78,79]. In both 
studies it is argued that more knowledge of this relation is essential for understanding 
mechanisms of altered functional connectivity, and this is very much in line with the 
main message of this study. Different disease conditions may have specific causes or 
patterns in which this relationship is harmed, but at the same time universal principles 
may apply that can help us gain more insight in a range of neuropsychiatric disorders.
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Conclusion

In this study we used a neural mass model with DTI-based human topology to dem-
onstrate that brain hub regions possess the highest levels of neuronal activity. More-
over, ‘Activity dependent degeneration’ (ADD), a damage model motivated by this 
observation, generates many AD-related neurophysiologic features such as oscillatory 
slowing, disruption of functional network topology and hub vulnerability. Early-stage, 
transient rises of firing rate and functional connectivity in ADD matches observations in 
pre-clinical AD patients, suggesting that this chain of events is not compensatory, but 
pathological. Overall, the results of this study favor a central role of neuronal activity and 
connectivity in the development of Alzheimer’s disease. 
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Materials and methods

In this study we simulated neurophysiologic activity of 78 Neural Mass Models embed-
ded in a realistic structural cortical network topology to evaluate hypotheses about the 
relation between (structural and functional) connectivity and neuronal activity. The 
output of this model provides information about the neuronal activity level in the form 
of average voltage and spike density per region, and generates EEG-like data that can 
be subjected to further spectral, functional connectivity and graph theoretical analysis. 
Hypotheses about brain pathophysiology can be tested by artificially damaging struc-
tural or dynamical properties of the brain model. The outline of the analysis procedure 
employed in this study is depicted in figure 8.

Figure 8: Outline of the consecutive steps in the experimental procedure.
Multi-step procedure from the simulation of realistic human neurophysiological activity to analyzing and 
correlating connectivity and activity results.

Network dynamics: the Neural Mass Model

We used a model of interconnected neural masses, where each neural mass represents 
a large population of connected excitatory and inhibitory neurons generating an EEG 
or MEG like signal. The model was recently employed in two other graph theoretical 
studies  [30,36]. The basic unit of the model is a neural mass model (NMM) of the alpha 
rhythm  [26,80,81]. This model considers the average activity in relatively large groups 
of interacting excitatory and inhibitory neurons. Spatial effects (i.e. distance) are ignored 
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in this model; brain topology is introduced later by coupling several NMMs together. 
The average membrane potential and spike density of the excitatory neurons of each 
of the NMMs separately were the multichannel output related to neuronal activity that 
was subject to further analysis. All neural mass model parameters and functions are 
summarized and explained in Supporting information, section 3 (see also figure S4 and 
table S1).

Structural network topology of neural mass model

A diffusion tensor imaging (DTI) based study by Gong et al. published in 2009 that fo-
cused on large-scale structural connectivity of the human cortex resulted in a connectiv-
ity matrix of 78 cortical regions  [24,82]. The connectivity matrix was implemented in our 
model software, and used as topological framework for the 78 coupled NMMs. Coupling 
between two NMMs, if present, was always reciprocal, and excitatory. Note that at the 
start of the simulation, the coupling strength between all NMM pairs (S) was identical, 
and the only difference between the cortical regions (or NMMs) was their degree of con-
nectivity to other neural masses (cortical regions). Since the coupling strength S was an 
arbitrarily chosen parameter, repeated analyses were performed with different values of 
this variable (see for example figure 3). 

Activity dependent degeneration (ADD)

For the present study the model was extended to be able to deal with activity dependent 
evolution of connection strength between multiple coupled NMMs. Activity dependent 
degeneration (ADD) was realized by lowering the ‘synaptic’ coupling strength as a func-
tion of the spike density of the main excitatory neurons. For each neural mass the spike 
density of the main excitatory population is stored in a memory buffer that contains the 
firing rates of the last 20 steps in the model. Step size depends on the sample frequency. 
At each new iteration, the highest spike density value of the last 20 sample steps is 
determined and designated as maxAct. From maxAct a loss is determined according to 
the following relation:
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population), Pt (thalamic input to main excitatory population) and S (structural 
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new lower values. To assess the specificity of ADD, results were compared with a 
random degeneration (RD) model in which the maxAct variable was discarded, so 
damage was equally applied to all regions, regardless of their level of activity. The 
effects of ADD and RD were measured by changes in total power (local average 
membrane potential) and spike density, and these two measures were used as 
representations of neuronal activity in further analyses.  
The computational model was programmed in Java and implemented in the in-house 
developed program BrainWave (v0.9.04), written by C.J. Stam (latest version 
available for download at http://home.kpn.nl/stam7883/brainwave.html). 
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Since spectral analysis is a common neurophysiological procedure that provides 
clinically relevant information in neurodegenerative dementia, we included this in our 
experiments. Fast Fourier transformation of the EEG-like oscillatory output signal 
was used to calculate for all separate regions the total power (absolute broadband 
power, 0-70 Hz) as well as the absolute power in the commonly used frequency bands 
delta (0.5-4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), higher alpha (10-13 Hz), beta 
(13-30 Hz) and gamma (30-45 Hz).  
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Since maxAct is non-negative, loss will be a number between 0 and 1. Next, the cou-
pling values C1 (connections between main excitatory population and inhibitory popu-
lation), C2 (connections between inhibitory population and main excitatory population), 
Pt (thalamic input to main excitatory population) and S (structural coupling strength 
between neural masses) are all multiplied by loss to obtain their new lower values. To 
assess the specificity of ADD, results were compared with a random degeneration (RD) 
model in which the maxAct variable was discarded, so damage was equally applied to all 
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regions, regardless of their level of activity. The effects of ADD and RD were measured by 
changes in total power (local average membrane potential) and spike density, and these 
two measures were used as representations of neuronal activity in further analyses. Note 
that the time scale of the data generated by the model is equal to normal brain activity 
and EEG/MEG data, but that the ADD and RD procedures have a more abstract time 
scale.  The exact duration of the degenerative procedures was not considered relevant 
to our present focus on the relation between connectivity and activity, but could be 
considered to reflect a length that is representative of a neurodegenerative process, 
spanning years to decades (see figures 3-5). The computational model was programmed 
in Java and implemented in the in-house developed program BrainWave (v0.9.04), writ-
ten by C.J. Stam (latest version available for download at http://home.kpn.nl/stam7883/
brainwave.html).

Spectral analysis

Since spectral analysis is a common neurophysiological procedure that provides 
clinically relevant information in neurodegenerative dementia, we included this in our 
experiments. Fast Fourier transformation of the EEG-like oscillatory output signal was 
used to calculate for all separate regions the total power (absolute broadband power, 
0-70 Hz) as well as the absolute power in the commonly used frequency bands delta 
(0.5-4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), higher alpha (10-13 Hz), beta (13-30 Hz) 
and gamma (30-45 Hz). 

Functional connectivity analysis

To quantify large-scale synchronization as a measure of interaction between different 
cortical areas, we used the Synchronization likelihood (SL), which is sensitive to both 
linear and non-linear coupling  [83,84]. SL was calculated for all frequency bands, and 
the matrix containing all pairwise SL values served as the basis for all further graph 
theoretical analyses of functional network characteristics.

Graph theoretical analysis

Graph theoretical properties of the structural DTI network that were relevant for our 
hub study such as node degree, betweenness centrality, and local path length were 
published in the original article by Gong et al  [24]. One new measure we introduced 
was the ‘normalized node strength’, which is the ratio of the structural degree of a node 
after activity dependent damage over its original degree. This measure was used to track 
structural connectivity loss and to compare the loss of degree in hubs and non-hubs. 
For functional network analysis, connectivity matrices were subjected to topographical 
analysis. The functional degree of a node is defined as the sum of all its link weights [85]. 
Averaging the functional degree over all nodes gives the overall functional degree of a 
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network. To match the functional network to the given structural network (minimizing 
effects of graph size and density), we constructed a binary, unweighted matrix that was 
obtained after using a threshold that resulted in a network with an average degree of 8, 
close to that of the structural network (which was 8.1). All graph theoretical measures 
used in this study are summarized in table 2, for more exact definitions please refer 
to [14,85]. For functional modularity analysis, we used Newman’s modularity metric 
combined with a simulated annealing process (previously described in [55, 86]).

Table 2. Graph theoretical definitions

Measure Description

Degree k Number of connections of a node. Average for all nodes in a network produces 
the average degree K.

Node strength ( or 
weighted degree)

kw Sum of all connection weights of a node. 

Clustering 
coefficient

Cp Number of directly connected neighbors of a node divided by the maximally 
possible number of interconnected neighbors. The mean of this value for all 
nodes gives the average clustering coefficient; a measure of local integration.

Path length Lp Shortest number of steps from one node to another. Average over all possible 
shortest paths is the characteristic path length of a network; a measure of global 
integration.

Gamma
γ

Normalized average clustering coefficient, obtained by dividing Cp by the 
average Cp of a set randomized networks of the same size and density.

Lambda λ Normalized characteristic path length, obtained by dividing Lp by the 
characteristic Lp of a set randomized networks of the same size and density.

Modularity Q Expresses the strength of the modular character of a network. 

Glossary of graph theoretical measures used in this study. For exact definitions, please refer to  [14,85].

Statistical analysis

For the baseline, pre-ADD analysis in experiment 1 and 2, the data-generating procedure 
using the model was repeated twenty times to obtain a representative amount of data. 
On each run the subsequent spectral, functional connectivity and graph theoretical 
analysis was performed, and then all results of these twenty runs were averaged prior 
to further statistical analysis. Regional results were visualized using 6 bins ascending in 
structural degree, each containing 13 regions. All 13 regions in the bin with the highest 
mean degree were classified as hubs. Standard deviations of bins are displayed as error 
bars. For bivariate correlations Pearson’s test was used.
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Supporting Information

1	 Relation between functional degree and total power

Since activity level might also be influenced by a node’s functional role rather than its 
structural connectivity status, we performed direct comparisons between functional 
degree (sum of all weighted functional connections of a node) and total power in the 
common frequency bands (see figure S1). Except for delta and higher alpha, most bands 
showed strong positive correlations. The beta band showed a remarkably strong cor-
relation (r=0.96). These results suggest that functional hub regions generally have high 
neuronal activity levels as well, as would be expected intuitively.

Figure S1: Correlation between functional degree and total power in all frequency bands.
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2	 Relation between structural and functional degree

Before examining the relationship between connectivity and activity, we wished to 
assess if structural and functional connectivity in our brain model was related; i.e. if 
structural hubs could also be characterized as functional hubs. Therefore, global func-
tional network properties of model simulation data were first investigated. Functional 
networks all showed small-world organization and weak to moderate modularity in all 
frequency bands, resembling human MEG data (not shown) [1,12]. Subsequently, we 
visually compared the structural and broadband functional connectivity matrices (see 
figure S2). Although not identical, the two matrices evidently share similar connectivity 
patterns.

Figure S2: Relation between structural and functional connectivity 
Left panel: matrix of the structural connections between all 78 cortical regions, adapted from Gong et 
al.  [24]. Red squares indicate the presence of a connection. Since all connections are bidirectional, the 
matrix is symmetrical over its diagonal axis. Right panel: matrix of functional connections acquired using 
the synchronization likelihood (SL) as coupling measure (broadband frequency range: 0.5-45 Hz), and 
thresholding all pairwise SL values to obtain a graph with the same average degree (K=8) as the structural 
connectivity matrix to the left. 

To quantify the relation between network structure and function we compared the 
structural and functional degree for all regions in different frequency bands (see figure 
S3). In all bands a positive correlation can be observed, indicating that structural hubs 
are also functional hubs in those frequency ranges. The strongest relation was found in 
the beta band (r = 0.85, p < 0.001). 
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Figure S3: Relation between structural and functional degree in all frequency bands. Error bars depict 
standard deviations within each bin after 20 simulated runs.

3	 Network dynamics: the Neural Mass Model

We used a model of interconnected neural masses, where each neural mass represents 
a large population of connected excitatory and inhibitory neurons generating an EEG or 
MEG like signal. The model was described in Ponten et al. and Stam et al.  [3,4]. The basic 
unit of the model is a neural mass model (NMM) of the alpha rhythm  [5,6]. The same 
model was used in a previous study on bifurcation phenomena of the alpha rhythm  
[7]. As previously described, this model considers the average activity in relatively large 
groups of interacting excitatory and inhibitory neurons. Spatial effects are ignored in 
this model; we will introduce topological effects by coupling several NMMs together. 
The excitatory and inhibitory populations of each NMM are characterized by their aver-
age membrane potentials Ve(t) and Vi(t), and by their pulse densities, i.e., the proportion 
of cells firing per unit time E(t) and I(t). Static non-linear functions SE(x) and SI(x) relate the 
potentials Ve(t) and Vi(t) to the corresponding pulse densities E(t) and I(t). The excitatory 
post-synaptic potential (EPSP) and inhibitory post-synaptic potential (IPSP) are modeled 
by the impulse responses he(t) and hi(t). The constants C1 and C2 describe the coupling 
from excitatory to inhibitory and from inhibitory to excitatory populations respectively. 
P(t) is the pulse density of an input signal to the excitatory population. Following Zetter-
berg et al.  [6] the following impulse responses were used:



150 Node 7

For he(t) the parameter values were: A = 1.6 mV, a = 55 s−1, b = 605 s−1. For hi(t) the parameter 
values were: A = 32 mV, a = 27.5 s−1, b = 55 s−1. The sigmoid function relating the average 
membrane potential, Vm, to the impulse density was also taken from Zetterberg et al.  [6]:

Here the parameter values used were: q = 0.34 mV−1, Vd = 7 mV, g = 25 s−1. For the cou-
pling constants we used C1 = 32 and C2 = 3  [5]. A schematic representation is shown 
in Figure S4A. The activity (spiking rate and power) of the excitatory population in an 
NMM is largely determined by excitatory input (from the thalamus, but also from other 
NMMs). All model parameters are summarized in Table S1. The impulse response and 
sigmoid functions are shown in Figure S4C. 

Figure S4A: Schematic presentation of single neural mass model. 
The upper rectangle represents a mass of excitatory neurons, the lower rectangle a mass of inhibitory 
neurons. The state of each mass is modeled by an average membrane potential [Ve(t) and Vi(t)] and a 
pulse density [E(t) and I(t)]. Membrane potentials are converted to pulse densities by sigmoid functions 
S1[x] and S2[x]. Pulse densities are converted to membrane potentials by impulse responses he(t) and 
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hi(t). C1 and C2 are coupling strengths between the two populations. P(t) and Ej(t) are pulse densities 
coming from thalamic sources or other cortical areas respectively.
Figure S4B: Coupling of two neural mass models. 
Two masses are coupled via excitatory connections. These are characterized by a fixed delay T and a 
strength g. 
Figure S4C: Essential functions of the model. 
The upper left panel shows the excitatory [he(t)] and inhibitory [hi(t)] impulse responses of Eq. 1. The 
upper right shows the sigmoid function relating average membrane potential to spike density (Eq. 2). 

The average membrane potential of the excitatory neurons Ve(t) of each of the NMMs 
separately was the multichannel output. The sample frequency was 500 Hz. In the 
present study each run consisted of 4096 samples (±8 s). Amount of data selected 
for analysis was based on previous studies and literature on reproducibility of graph 
theoretical results  [9,10]. The adjacency matrix at the end of each run was subjected to 
topographical analysis. These parameters go back to a large number of studies with this 
lumped model, and ultimately to the original model of Lopes da Silva  [5]. 

The final model consisted of 78 of the NMMs as described above, which were coupled 
together based on the structural DTI network results from Gong et al.  [24]. Coupling 
between two NMMs, if present, was always reciprocal, and excitatory. The output E(t) of 
the main excitatory neurons of one NMM was used as the input for the impulse response 
he(t) of the excitatory neurons of the second NMM; the output E(t) of the second module 
was coupled to the impulse response he(t) of the excitatory neurons of the first NMM. 
Following Ursino et al.  [87] we used a time delay (T × sample time, with n an integer, 0 
< T < 21) and a gain factor. In the present study, n and gain were set to 1 for all connec-
tions. A schematic illustration of the coupling between two NMMs is shown in Figure 1B. 
For the present study the model was extended in order to be able to deal with activity 
dependent degeneration of connection strength between multiple coupled NMMs. 
Coupling strength between neural masses was initially set at the same level for all con-
nections; different levels were tested (S=1, S=1.5, S=2; see figure 3). For the present study 
the model was extended in order to be able to deal with activity dependent evolution 
of connection strength between multiple coupled NMMs. Activity dependent degenera-
tion (ADD) was realized by lowering the ‘synaptic’ coupling strength as a function of the 
spike density of the main excitatory neurons. For each neural mass the spike density of 
the main excitatory population is stored in a memory buffer that contains the firing rates 
of the last 20 steps in the model. Step size depends on the sample frequency. At each 
new iteration, the highest spike density value of the last 20 sample steps is determined 
and designated as maxAct. From maxAct a loss is determined according to the following 
relation:

The average membrane potential of the excitatory neurons Ve(t) of each of the NMMs 
separately was the multichannel output. The sample frequency was 500 Hz. In the 
present study each run consisted of 4096 samples (±8 s). Amount of data selected for 
analysis was based on previous studies and literature on reproducibility of graph 
theoretical results  [9,10]. The adjacency matrix at the end of each run was subjected 
to topographical analysis. Table 1 gives an overview of model parameters and initial 
settings. These parameters go back to a large number of studies with this lumped 
model, and ultimately to the original model of Lopes da Silva  [5].  
For the present study the model was extended in order to be able to deal with activity 
dependent evolution of connection strength between multiple coupled NMMs. 
Activity dependent degeneration (ADD) was realized by lowering the ‘synaptic’ 
coupling strength as a function of the spike density of the main excitatory neurons. 
For each neural mass the spike density of the main excitatory population is stored in a 
memory buffer that contains the firing rates of the last 20 steps in the model. Step size 
depends on the sample frequency. At each new iteration, the highest spike density 
value of the last 20 sample steps is determined and designated as maxAct. From 
maxAct a loss is determined according to the following relation: 
 

€ 

loss = exp−0.01max Act         (3) 
 
Since maxAct is non-negative, loss will be a number between 0 and 1. Next, the 
coupling values C1 (connections between main excitatory population and inhibitory 
population), C2 (connections between inhibitory population and main excitatory 
population), Pt (thalamic input to main excitatory population) and S (structural 
coupling strength between neural masses) are all multiplied by loss to obtain their 
new lower values. 
 
The model was programmed in Java and implemented in the program BrainWave 
(version 0.9.04, written by C.J. Stam, available on home.kpn.nl/stam7883). The Java 
code was based on the Pascal source code described by Schuuring [11].  

			   (3)
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Since maxAct is non-negative, loss will be a number between 0 and 1. Next, the coupling 
values C1 (connections between main excitatory population and inhibitory popula-
tion), C2 (connections between inhibitory population and main excitatory population), 
Pt (thalamic input to main excitatory population) and S (structural coupling strength 
between neural masses) are all multiplied by loss to obtain their new lower values.

The model was programmed in Java and implemented in the program BrainWave (ver-
sion 0.9.04, written by C.J. Stam, available on home.kpn.nl/stam7883). The Java code was 
based on the Pascal source code described by Schuuring [11]. 
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Table 8.S1. Overview of model parameters.
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4	 Relation between structural degree and alpha peak frequency

An additional observation in our experiments is that hub regions have a slightly lower 
alpha peak in their power spectrum, as is shown in figures S5 and S6.

It might be possible that a high structural connectivity slows regions down, however 
this finding should be verified in neurophysiological experiments. NB: the mu rhythm, 
which is a variation of the alpha rhythm that is present in cortical regions that are not 
seen as hub regions, is indeed faster than the dominant posterior alpha rhythm.

Figure S5: Power spectrum of hubs.
Power spectrum of a hub region (precuneus) in black, and a non-hub region in blue. Note the difference in 
power, but also the lower alpha peak of the hub region.

Figure S6: Alpha peak frequency in hubs.
The alpha peak frequency of all cortical regions plotted against their structural degree. A negative 
correlation can be observed (r=-0.53). Hubs (the 13 regions with highest structural degree) have a 
significantly lower alpha peak (p<0.001) compared to non-hubs.
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Abstract

Despite considerable advances towards understanding the molecular pathophysiology 
of the neurodegenerative dementias, the mechanisms linking molecular changes to 
neuropathology and the latter to clinical symptoms remain largely obscure. Connectiv-
ity is a distinctive feature of the brain and the integrity of functional network dynamics 
is critical for normal functioning. A better understanding of network disruption in the 
neurodegenerative dementias may help bridge the gap between molecular changes, 
pathology and symptoms. Recent findings on functional network disruption as assessed 
with “resting-state” or intrinsic connectivity fMRI and EEG/MEG show distinct patterns 
of network disruption across the major neurodegenerative diseases. These network 
abnormalities are relatively specific to the clinical syndromes, and in Alzheimer’s disease 
and frontotemporal dementia network disruption tracks the pattern of pathological 
changes. These findings may have a practical impact on diagnostic accuracy, allowing 
earlier detection of neurodegenerative diseases even at the pre-symptomatic stage, and 
tracking of disease progression.

Introduction

Historically, clinicians have recognized patients with neurodegenerative dementias 
based on their clinical symptoms. In recent years, basic science advances have allowed 
researchers to re-categorize these diseases based on molecular phenotype, i.e. which 
toxic, misfolded disease protein aggregates are observed in the brain post-mortem, 
such as beta amyloid (Aβ) and hyperphosphorylated tau (HP-tau) in Alzheimer’s Disease 
(AD); tau, TAR DNA-binding protein of 43 kDa (TDP-43), or fused in sarcoma (FUS) in 
frontotemporal dementia (FTD), and alpha-synuclein in Parkinson’s Disease (PD) and 
Dementia with Lewy Bodies (DLB).1 These pathological changes are considered early 
events in a cascade that begins at the synaptic and neuronal levels and ultimately leads 
to the clinical syndrome. Within this temporal window, quantifiable biological, imaging, 
and physiological markers of pathology have been identified that can be considered in 
vivo intermediate phenotypes. Such surrogate markers of pathology can clarify disease 
pathophysiology, i.e. link the molecular phenotype to clinical symptoms and have the 
potential to facilitate earlier, more accurate diagnosis and monitoring of disease pro-
gression. In AD, PET amyloid ligands enable in vivo mapping of cerebral Aβ deposition,2 
whereas structural MRI has been shown to reflect HP-tau-related neurodegeneration.3 
These biomarkers have recently been incorporated into the new AD diagnostic crite-
ria.4,5 In disorders such as PD, FTD and DLB, structural biomarkers have clarified disease 
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pathophysiology by showing patterns of atrophy associated with histopathology on the 
one hand,6-8 and clinical symptoms on the other (Table 1).8,9

Table 1. Connectivity as an intermediate phenotype in the degenerative dementias

Alzheimer’s disease Frontotemporal 
degeneration 
(behavioural 
variant)

Parkinson’s 
disease

Dementia with 
Lewy bodies

Molecular 
phenotype

β-Amyloid—distributed 
throughout neocortex; 
hyperphosphorylated 
tau—medial temporal 
lobe

Tau, TDP-43, or 
FUS—frontal cortex, 
anterior temporal 
cortex, striatum, 
amygdala, and 
thalamus

α-Synuclein—
brainstem (dorsal 
motor nucleus of 
the vagus nerve, 
locus coeruleus, 
and substantia 
nigra)

α-Synuclein—
brainstem (dorsal 
motor nucleus of 
the vagus nerve, 
locus coeruleus, 
and substantia 
nigra)

Intermediate phenotypes

Molecular 
imaging

Widespread diffuse 
neocortical amyloid 
ligand uptake on PET

NA NA NA

Connectivity Default-mode-network 
disruption on task-free 
functional MRI/EEG/
MEG

Salience network 
disruption

Basal ganglia–
thalamocortical 
loop abnormalities

NA

Structural 
imaging

Atrophy in the medial 
temporal lobe

Atrophy in the 
anterior cingulate 
cortex, frontoinsula, 
frontal pole, temporal 
pole, striatum, 
thalamus, and 
amygdala

Mild atrophy in 
the frontal and 
temporal cortices, 
and basal ganglia

Atrophy in 
the substantia 
nigra, midbrain, 
hypothalamus, 
basal forebrain, and 
amygdala

Clinical 
phenotype

Episodic memory loss Social–emotional 
deficits

Motor impairment 
(tremor, rigidity, 
bradykinesia, and 
postural instability)

Hallucinations, 
parkinsonism, 
fluctuations in 
cognition, and 
motor impairment

TDP-43=TAR DNA-binding protein of 43 kDa. FUS=fused in sarcoma. NA=not available. 
EEG=electroencephalography. MEG=magnetoencephalography.

Localization-based approaches (such as in vivo mapping of molecular changes and 
neurodegeneration) have helped build much of the current knowledge regarding 
disease pathophysiology. These approaches, however, are less suited to investigate 
neuronal/synaptic dysfunction, which is thought to underlie cognitive and functional 
deficits. Because brain functions rely on the integrity of dynamic communication be-
tween interconnected brain regions and circuits, a network perspective accounting for 
such interactions has the potential to provide novel and meaningful intermediate phe-
notypes of pathology (Table 1). Prevalent views on the relationship between symptoms 
and pathology in AD help illustrate this notion (Figure 1). In typical AD, the progression 
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of symptoms follows a relatively stereotyped order which mirrors the topographic 
progression of HP-tau:10 episodic memory loss occurs first (hippocampus and medial 
temporal lobe, posterior cingulate cortex), followed by semantic memory loss (lateral 
temporal cortex), aphasic, apraxic, and visuospatial symptoms (frontal, temporal, and 
parietal neocortex), and finally motor and visual deficits (sensorimotor and occipital cor-
tex). Although atypical variants exist,11 this orderly progression may reflect incremental 
spread throughout interconnected regions within large-scale networks, and ultimate 
spread into adjacent or upstream regions.

Figure 1: The pathophysiological framework of Alzheimer’s disease: connectivity as an intermediate 
phenotype between pathology and symptoms
*Evidence that intermediate phenotypes are associated with pathological or clinical phenotypes.

The brain can be viewed as a complex neural network consisting of structurally and 
functionally interconnected regions at multiple scales (Panel 1).12 At the macroscopic 
level, neural networks can be investigated non-invasively in health and disease with 
functional MRI and neurophysiological techniques (electro- and magneto-encephalog-
raphy, EEG and MEG).13,14 The aim of this review is to provide a comprehensive overview 
of findings on functional network disruption in the most prevalent neurodegenerative 
dementias. Although several excellent reviews have addressed functional networks 
disruption in AD and in psychiatric conditions,15-20 here we summarize studies across 
multiple neurodegenerative dementias. By including FTD, PD dementia and DLB, we 
highlight functional network similarities and differences among conditions that share 
common mechanisms (toxic protein aggregation and neuronal loss) but have distinct 
clinical phenotypes. Toward this aim, resting-state “task-free” functional imaging and 
neurophysiological studies will be reviewed. Because our primary goal is to review 
functional methods that are broadly applicable across neurodegenerative diseases, we 
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have omitted task-activation studies, which require the design of disease-specific ex-
periments (for a review of its applications in AD, see Dickerson 2007),21 as well as studies 
of gray matter structural covariance.22,23

Techniques to investigate network integrity

fMRI, EEG and MEG techniques enable researchers to investigate large-scale neural 
networks at different spatial and temporal resolutions. Functional connectivity between 
brain regions is measured at a spatial resolution as low as 2-3 millimeters using fMRI and 
at about 5-30 millimeters with EEG/MEG. fMRI and neurophysiological techniques con-
trast most sharply in their temporal and spatial resolutions, which differ by three orders 
of magnitude (seconds versus milliseconds). Structural connectivity within networks can 
be measured at a spatial resolution of 3-6 millimeters using diffusion tensor imaging 
(DTI).

Task-free fMRI
Task-free fMRI allows functional network mapping at high spatial resolution. Resting-
state or so-called “intrinsic connectivity” fMRI is used to measure spontaneous low fre-
quency (<0·08-0·1 Hz) fluctuations in the blood oxygen level dependent (BOLD) signal 
while subjects lie quietly in the scanner and perform no specific task.24 The BOLD signal 
reflects changes in the ratio between oxy- and deoxy-haemoglobin following neuronal 
activity, therefore resting fMRI provides an indirect marker of neuronal function on a 
time scale of seconds. Functional connectivity is defined by temporal correlations (over 
minutes of data acquisition) of the BOLD signal between spatially distinct regions.24

Resting-state networks can be identified with several analytical methods, including 
“seed” or region-of-interest based methods and independent component analysis 
(ICA).24 Region-of-interest based approaches measure the temporal correlation between 
an a priori selected brain region and all other brain voxels. The choice of the seed region 
is investigator driven and depends on the goals of the analysis. This approach identi-
fies a network of brain areas (“nodes”; Panel 1) functionally connected with the seed 
region. ICA is a data-driven method that does not require a priori hypotheses about the 
regions of interest. This approach enables identification of multiple networks consisting 
of spatially independent and temporally correlated regions.25 Several networks have 
been consistently identified with either method (Figure 2):26 the default mode network 
(DMN), a posterior cingulate cortex-precuneus/medial temporal/lateral temporopa-
rietal/medial frontal network that often deactivates during cognitively demanding 
tasks;27 bilateral executive-control networks made up of lateral frontal-parietal nodes;28 
the salience network, an anterior cingulate/frontoinsular system with links to limbic and 
subcortical autonomic control centers,28 a dorsal attentional system embedded in high 
frontoparietal sensorimotor association regions,29 and networks related to primary vi-
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sual, auditory, and sensorimotor regions.26 One area of active work concerns how many 
brain networks can be meaningfully outlined at the group and single-subject levels with 
these methods.

Figure 2 Functional connectivity on resting-state fMRI in healthy people
Independent-component-analysis-derived resting-state fMRI networks (default mode, salience, left and 
right executive control, visual, and motor networks) 26–28 of a healthy man aged 33 years.
Red-to-yellow colours show the strength of each voxel’s connectivity to overall component time series. 
fMRI=functional MRI.

In the absence of an experimental task, these networks show a tight spatial cor-
respondence with the neuronal circuits activated during cognitive, emotional, and 
sensorimotor tasks.30 Moreover, connectivity strength within these networks “at rest” 
has been related to cognitive and emotional state,28,31 further supporting resting-state 
fMRI as a tool to investigate symptoms and deficits in the context of disease. Functional 
networks can also be investigated within a graph theoretical framework (see section 2.4) 
by defining brain regions as the network nodes (e.g., through atlas-based or functional 
brain parcellation) and the temporal correlation strengths between node pairs as the 
weighted edges.

Task-free EEG and MEG 
Task-free EEG and MEG allow functional network mapping at high temporal resolu-
tion. These techniques represent a complementary approach to studying resting-state 
networks is based on the synchrony of spontaneous electrical and magnetic activity 
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of the brain. Oscillating neuronal assemblies are assumed to reflect cognitive process-
ing,32 and generate a fluctuating electromagnetic field that can be detected with scalp 
electrodes. EEG detects the electrical component of this field with a high temporal 
resolution (millisecond range) and provides a direct reflection of (large-scale) neuronal 
activity. Factors that limit the use of EEG are the relatively modest spatial resolution and 
the difficulty recording subcortical sources of activity. In this regard, MEG provides an 
important step forward. MEG records the very weak magnetic field around the brain 
(±100-1000 femtoTesla), which requires advanced equipment including superconduct-
ing quantum devices and a magnetically shielded room, but offers clear advantages 
including higher spatial resolution (±5 millimeters), less artifact interference, and a 
shorter set-up time without electrodes.33 The EEG and MEG signals are usually analyzed 
in separate frequency bands: delta (between 0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta 
(13-30 Hz) and gamma (30-45 Hz).

Oscillatory synchronization between different brain regions can be quantified with 
several procedures. Coherence, one of the most popular synchronization measures, 
describes the linear similarity between two EEG/MEG time-series at a given frequency.34 
Examples of more advanced markers of functional coupling are the Synchronization 
Likelihood, which is sensitive to both linear and non-linear interdependencies between 
EEG/MEG signals, and the Phase Lag Index, which overcomes the problem of volume 
conduction, whereby neighboring electrodes detect common sources, spuriously 
increasing synchronization.13 Functional networks can be constructed by taking signals 
recorded at different regions as network nodes, and their mutual synchronization as 
connection strengths (Figure 3).13 Subsequently, these networks can be analyzed using 
graph theoretical algorithms, as outlined in the section 2.4.

Figure 3 Functional connectivity on resting-state MEG in healthy people
Headplot showing functional MEG network of a healthy woman aged 63 years in the alpha (8–13 
Hz) and beta (13–30 Hz) frequency ranges.13 Coloured lines show diff erent functional subnetworks 
(modules), black lines represent their interconnections (only shown in beta-band example). 
Background colours show connectivity strength (red are hub—ie, highly connected—regions). 
MEG=magnetoencephalography. SL=synchronisation likelihood.13



168 Node 8

Diffusion tensor imaging
Diffusion tension imaging provides markers of structural connectivity. Brain regions 
with synchronous BOLD signal, electrical or magnetic fluctuations often (but not always) 
feature some form of direct physical connection. DTI assesses the structural integrity of 
brain connections (i.e. axons and fiber tracts) by measuring changes in the diffusion of 
water molecules through tissues.35 Two markers of structural integrity are commonly 
investigated: fractional anisotropy, a marker of white matter (WM) fiber disruption 
(loss of fiber coherence, demyelination, axonal loss), and mean diffusivity, a marker for 
cell density.35 Axial and radial diffusivity may provide more specific markers of axonal 
damage and demyelination.35 Common methods to investigate structural disruption are 
voxel-wise, DTI tractography and ROI-based techniques.35 DTI tractography may be pref-
erable on an individual subject basis, allowing one to reconstruct and visualize specific 
WM connections between cortical nodes (Figure 4).36 Graph theoretical analysis can be 
used to build structural networks and study their topology, in a way similar to that used 
to investigate resting-state fMRI and EEG/MEG-derived functional networks.
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Figure 4 Structural connectivity assessed with diff usion tensor imaging in a healthy man aged 33 years. 
Diffusion tensor imaging tractography shows long (mainly visible in sagittal view as green and blue 
colour-coded fi bres) and short (mainly visible in axial and coronal views as red colour-coded fibres) 
white-matter connections (top row). Specific tracts can be identified that subserve distinct cognitive and 
non-cognitive functions. The fornix and cingulum are mainly associated with memory and emotional 
processing, cortico-cortical association and intra-hemispheric tracts are associated with a broad range 
of cognitive processes, and the corticospinal and cerebellar tracts are generally involved in motor 
disorders.36

Network organisation
Graph theory provides a framework for exploring brain network organization in normal 
and pathological conditions.13,14,37 Graph theoretical analysis to fMRI, EEG/MEG and DTI 
data can model the whole brain as a single network and investigate its properties such as 
network structure, modularity, and robustness to damage (Panel 2).14 The healthy human 
brain is thought to be organized into a ‘small-world’ topology,38 a network architecture 
that combines an efficient balance between local (short range) and global (long range) 
connectivity. This small-world configuration is considered better suited for information 
transfer and thus presumably for cognitive processing than the topology of ‘random’ or 
‘regular’ networks.39 Graph theory can also extract functional sub-networks (‘modules’) 
and quantify interactions between them by using data-driven modularity algorithms.40 
Another area of graph theory is devoted to the investigation of highly connected (‘hub’) 
nodes, since these regions are critical for network integrity (Panel 2).

Increasing evidence suggests that functional and structural network properties are related 
to development,41 age and cognition.42-44 Older (mean age of 67) vs. Young (mean age of 
24) adults show a distinct modular organization of the brain, the former with greater con-
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nectivity between posterior and central regions, and the latter showing higher connectivity 
between fronto-cingulo-parietal modules.42 In addition, IQ score has been negatively cor-
related with global functional connectivity (characteristic path length) in young adults,43 and 
the structural efficiency of networks has been negatively associated with age, and positively 
correlated with processing speed, visuospatial and executive functions.44

Functional networks and clinical impairment

Imaging and lesion studies have led to valuable insights into the functional anatomy of 
the brain, and localization principles are vital to the clinical neurologist. As outlined in the 
introduction, however, localization-based perspectives often fail to explain the complex 
interrelationship between neurodegenerative pathology and clinical symptoms. Even 
‘focal’ lesions like stroke (e.g. ‘strategic’ infarction), brain tumour or traumatic brain injury 
can cause widespread disturbance of functional connectivity and unexpected cognitive 
symptoms that can be explained by a variety of lesion locations.45-47 There is also increas-
ing evidence that local damage can change the overall network structure in a way that 
can lead to pathological hypersynchronization and epilepsy.48 In an elegant simulation 
study,49 the effect of focal brain lesions on the patterns of functional connectivity was 
investigated by simulating lesions at different brain locations. The study showed that fo-
cal lesions located in the precuneus, medial anterior cingulate cortex, temporo-parietal 
junction, or superior frontal cortex produced widespread and pronounced changes in 
functional connectivity with intra-hemispheric and contralateral regions. Conversely, 
lesions to the visual or motor cortex had limited effects on global connectivity.49 Neuro-
degenerative processes, characterised by gradual and selective spreading of pathology 
across brain regions, might cause a progressive targeted network injury, leading to 
specific “disconnection syndromes” and progressive cognitive dysfunction.50,51 The dif-
ference between most neurodegenerative diseases and neurological disorders due to 
focal lesions is that in the latter case networks are affected at random, with no specific 
topographic and chronological pattern, whereas in the former case networks are af-
fected with a relatively stereotyped sequence. Network analysis may therefore help to 
explain the link between local damage, long-range disconnection, and more widespread 
physiological and clinical dysfunction. Literature in this emerging field is still scarce but 
already points to intriguing new hypotheses.

Alzheimer’s disease
AD results from deposition of Aβ in the neocortex and HP-tau in the entorhinal cortex 
and hippocampus.52,53 More recent evidence suggests that even earlier HP-tau-related 
neurofibrillary changes may occur in the brainstem dorsal raphe nucleus or the locus 
ceruleus.54 In humans HP-tau pathology is associated with memory deficits,55 whereas Aβ 
deposition is not directly related to cognition,55 but shows topographical correspondence 
with the DMN.56 Moreover, the sequence of functional and structural disruption within 
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and between DMN regions is reminiscent of the spread of tau pathology. Buckner et al. 
mapped in vivo PIB-PET Aβ deposition in patients with AD and cortical hubs in healthy 
controls and showed that regions of high Aβ deposition in patients largely overlap with 
DMN cortical hubs in the healthy brain, especially the posterior cingulate cortex.56 Disrup-
tion of DMN regions in AD has been consistently reported by resting-state fMRI studies 
using ICA or seed-based methods.57-61 Similar changes have been reported in subjects with 
mild cognitive impairment, a condition which is believed to often represent pre-clinical 
AD.62-64 Early DMN functional disruption in AD involves the medial temporal lobe and 
posterior cingulate cortex/precuneus,57,58,62,63 subsequently worsening and extending to 
the lateral parietal and medial frontal regions with increasing disease severity.59 Structural 
connectivity disruption follows a similar pattern: the posterior WM tracts, connecting the 
hippocampus/medial temporal lobe with the posterior cingulate cortex and the limbic 
regions, are affected first,65-67 whereas frontal WM tracts (genu of corpus callosum, anterior 
cingulum) are minimally affected, except for the uncinate and arcuate fasciculi, which 
connect temporal to frontal cortex.66-68 Electrophysiological studies are consistent with 
fMRI studies in reporting a reduction of cortico-cortical connectivity in AD. EEG and MEG 
analyses have shown reduced connectivity between long distance fronto-parietal and 
fronto-temporal regions in the alpha and beta frequency bands.69-71 These frequency 
bands show good topographic correspondence with the DMN and the greatest correla-
tion between EEG power and DMN fMRI fluctuations.72,73

When tau pathology has extended through the entire network, cognitive deficits gen-
erally involve multiple domains and patients will have developed overt AD. Therefore 
the breakdown of this network due to neurodegeneration may track progression to 
dementia. In subjects with mild cognitive impairment, preliminary evidence indicates 
that reduced DMN connectivity is a significant predictor of conversion to AD indepen-
dently of global atrophy.74 Interestingly, the predictive value of DMN connectivity was 
no longer significant when memory performance was taken into account,74 suggesting 
that functional connectivity changes are related to memory deficits.

In addition to reduced DMN connectivity, increased intrinsic connectivity has been 
reported by several resting-state fMRI studies between frontal-parietal regions.59,61,63 The 
basis for these connectivity increases remains unclear; although some authors suggest 
that they represent compensatory mechanisms,59,61,63 there is as yet no evidence that 
such changes improve cognition. An alternative explanation is that damage to one 
network enhances connectivity within regions that normally feature an anti-correlated 
relationship with the damaged network.58

Graph theoretical analysis of network organization in AD has shown a loss of small-
world structure toward a more ‘random’ network topology,75-78 indicated by a reduction 
in the clustering coefficient values,75,76,78 and lower characteristic path length.75,77,78 The 
topography of network abnormalities assessed with this technique is in line with previous 
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studies, showing reduced connectivity in the hippocampus and posterior parietal regions 
with fMRI,76,77 and in the alpha (8-10Hz) and beta (13-30Hz) frequency bands with MEG.75,78 
In addition, Stam et al. have shown greater ‘hub’ vulnerability in AD, as simulated targeted 
attacks to highly connected nodes better explained the network changes observed in 
the alpha frequency band than ‘random’ removal of nodes.75 A single study has assessed 
structural network connectivity, reporting abnormal network topology in AD.79

Frontotemporal dementia
FTD refers to a group of clinical syndromes associated with underlying frontotemporal 
lobar degeneration (FTLD) pathology. Three major clinical syndromes are recognized: a 
behavioural variant (bvFTD), which presents with social-emotional dysfunction, and two 
primary progressive aphasia (PPA) subtypes, the semantic and nonfluent/agrammatic 
variants.80 A high proportion of FTLD cases present associated motor neuron disease. 
A third PPA subtype, the logopenic variant, has been included in the recently revised 
diagnostic criteria,81 although many patients with this variant show underlying AD at 
autopsy. FTLD pathology, in turn, can be divided into three major molecular classes 
based on the underlying disease protein: tau (FTLD-tau), TDP-43 (FTLD-TDP), or FUS 
(FTLD-FUS).80 For some clinical syndromes, such as semantic variant PPA and FTD with 
motor neuron disease, the underlying FTLD molecular class can be predicted with good 
confidence during life.82,83 For other syndromes, such as bvFTD, existing criteria do not 
reliably predict the underlying molecular pathology.83

Recent work has revealed that bvFTD syndrome, like typical AD, reflect the progressive 
degeneration of a specific large-scale network, the “salience network”.6,84 This network 
is involved in processing emotionally significant stimuli and is inversely correlated with 
the DMN in task-free settings,28 leading Seeley and colleagues to predict that bvFTD 
and AD would feature divergent network connectivity patterns.85 This hypothesis was 
subsequently tested using task-free fMRI and ICA analysis of the DMN and salience 
networks in patients with bvFTD and AD.58 The study identified divergent patterns in 
the two clinical groups, with reduced salience network connectivity and increased DMN 
connectivity in bvFTD and the opposite pattern in AD.58 In addition, reduced salience 
network connectivity in bvFTD patients was associated with greater disease severity.58 A 
score incorporating DMN and salience network connectivities better discriminated be-
tween the two clinical groups than did either network alone,58 suggesting that network-
based patterns which are sensitive to decreases and increases may prove more specific 
to a given disease. Studies of structural connectivity in bvFTD support the disruption of 
specific frontal-temporal WM tracts, such as the bilateral uncinate and anterior cingulate 
tracts.66,86 The FTD language syndromes (PPAs) have not yet been directly investigated 
with resting-state network mapping, however atrophy-mapping studies suggest that 
they are likewise associated with degeneration of specific networks.84 DTI studies indeed 



Functional Network Disruption in the Degenerative Dementias 173

support the disruption of specific WM tracts within the PPA-targeted networks.86,87 Neu-
rophysiological literature on functional networks in FTLD is almost non-existent. One 
resting-state EEG study assessed functional connectivity in AD, FTLD, and persons with 
subjective memory complaints, and failed to find group differences.88 A subsequent MEG 
study of network organization in FTD patients however showed changes in the opposite 
direction to that observed in AD patients, towards an overly regular and ordered topol-
ogy.78 This intriguing contrast aligns with resting-state fMRI results in AD and FTD58 to 
suggest that these disorders may exert divergent effects on large-scale networks (Figure 
5)89 and that these effects may help distinguish these disorders during life.

Figure 5 Schematic representation of a small-world brain functional network and of simulated regular 
and random networks with 35 nodes and 120 connections. Regular networks (A) have many connections 
between neighbouring regions (red lines) and few connections with distant nodes (light blue lines). 
Small-world networks (B) have fewer local connections and more long-distance connections. Random 
networks (C) have few local connections and many connections between distant regions. Each network 
is shown overlaid onto a standard template (top row) and in schematic representation (middle row). 
Nodes represent 35 cortical points of the left hemisphere drawn from the automated anatomical labeling 
template, and edges represent functionally connected nodes. The real-world network was extracted from 
a single person, the corresponding regular (A) and random (C) networks were simulated with the Brain 
Connectivity Toolbox.89 The corresponding theoretical Watts–Strogatz network models are also shown 
(bottom row). Adapted from Watts and Strogatz38 by permission of Macmillan Publishers Ltd.

Whether the underlying FTD molecular class can be identified by its impact on net-
work-specific connectivity, however, remains unknown. Considering the role of anatomy 
(rather than the specific misfolded protein) in driving the clinical syndrome, there is 
reason to suspect that anatomically based methods (including resting-state network 
mapping) may struggle to reliably differentiate patients with bvFTD due to FTLD-tau vs. 
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FTLD-TDP vs. FTLD-FUS, for example. On the other hand, it remains possible that to date 
bvFTD remains an overly inclusive clinical syndrome. If so, further clinical or anatomical 
differentiation may improve our ability to predict pathology during life.90,91

Parkinson’s Disease and Dementia with Lewy bodies
PD and DLB are two neurodegenerative syndromes associated with deposition of alpha-
synuclein-containing Lewy bodies and Lewy neurites within brainstem, limbic, and 
cortical neurons.92 In spite of a common molecular substrate, PD and DLB syndromes 
show important differences with regard to the timing and severity of symptoms.93 A 
proportion of patients with PD develop dementia in later disease stages (Parkinson 
disease dementia, PDD), clinically resembling DLB.93

Available evidence suggests that PD and DLB are associated with distinct patterns of 
functional network dysfunction, namely increased basal ganglia-thalamocortical con-
nectivity in PD and reduced global and local cortico-cortical connectivity in patients 
with dementia. The basal ganglia-thalamocortical loop includes the striatum, globus 
pallidus, thalamus, subthalamic nucleus, and substantia nigra; and cortical motor areas 
(primary motor cortex, supplementary motor area, premotor cortex).94 Resting-state 
fMRI studies of this network have consistently reported increased connectivity between 
the basal ganglia and motor regions in PD patients.95-98 These network abnormalities 
were normalised after levodopa administration.95,98 In addition, reduced connectivity 
within this network has been reported by resting-state fMRI studies between the puta-
men and parietal and motor areas.95,96 Resting-state EEG/MEG studies reported increased 
connectivity, in the alpha and beta (8-30 Hz) frequency ranges, between the subthalamic 
nucleus and the motor cortex,99 and cortico-cortically.100 A resting-state MEG study of 
patients in early, drug-naive stages showed an increase in alpha band (8-10 Hz) cortico-
cortical functional connectivity that expanded towards other frequency bands (4-30 Hz 
range) with increasing disease severity.101 Increased connectivity affected both global 
and local connections and was associated with motor deficits.100,101 Less clear is whether 
levodopa administration and deep brain stimulation normalise these abnormalities, as 
one study showed a normalization of connectivity after intervention in association with 
motor improvement,100 and another showed a further increase in connectivity.99 In PDD, 
preliminary studies indicate a different pattern, with decreased functional connectivity 
reminiscent of the changes in AD.102 In DLB, the most consistent finding is a reduction 
of global cortico-cortical coherence in the alpha (8-13Hz) frequency band.103-105 A MEG 
study specifically assessed coherence in long (anterior and posterior) and short (lateral 
and medial) cortico-cortical connections, reporting more pronounced loss of connec-
tivity in long- than short-distance connections in this frequency band.103 Inconsistent 
changes have been reported in the delta (0·5-4Hz) frequency range.104,105 
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In PD and DLB, a clear correspondence between structural and functional connectiv-
ity changes in specific networks is difficult to draw, in part because DLB has yet to be 
linked to a particular network detectable with resting-state fMRI.106 DTI demonstrates 
microstructural abnormalities in the basal ganglia of PD patients.107-109 but evidence of 
structural disconnection within this circuit is limited.109,110 Reduced connectivity in the 
frontal and parietal association tracts has been reported but without detecting a clear 
pattern of WM involvement.111-113 PD patients who develop dementia show a specific in-
volvement of the posterior cingulum compared with both PD and controls.114,115 In DLB, 
the most consistent finding is a reduction of connectivity in the inferior longitudinal 
fasciculus,114,116-118 which connects the posterior temporal and occipital visual cortices, a 
finding in line with the occurrence of visual hallucinations in these patients.116 In addition, 
DLB patients show reduced connectivity between fronto-temporal and fronto-occipital 
regions compared to controls.114,118 This pattern of WM disruption is overall similar to 
that detected in patients with PDD,114 and AD,118 but damage in the visual association 
areas is more pronounced in DLB than in other dementias.114,118 Because these studies 
were based on patients diagnosed on clinical grounds, whereas DLB and AD patholo-
gies often co-occur at autopsy,119 it is perhaps not surprising that efforts to date show 
significant overlap in the patterns of network disruption in DLB and AD.103,114,116,118

Graph theory studies of network organization in PD, PDD and DLB are scarce. One 
study investigated motor circuits connectivity in PD, reporting abnormal basal ganglia-
thalamocortical connectivity in line with previous fMRI studies,120 and another study 
showed reduced global efficiency in PD.121

Neurobiological and clinical implications of network disruption
Research findings reviewed here demonstrate that functional neuroimaging is able 
to detect distinct patterns of network disruption across the major neurodegenerative 
diseases (Table 2). These networks are relatively specific to the clinical profiles and may 
represent intermediate phenotypes between pathology and clinical syndromes. In AD, 
the topography of Aβ deposition overlaps with the DMN, broadly defined, whereas 
HP-tau pathology is most prominent within a DMN subnetwork devoted to episodic 
memory.122 In FTD, the salience network is profoundly disrupted in the behavioural vari-
ant. In PD, alpha-synuclein pathology affects the cortico-striatal motor loops. In DLB, 
forebrain alpha-synuclein deposition has not been matched to a specific network with 
resting-state techniques, but neuropathological evidence supports an ascent through 
the brainstem to the limbic and cortical regions associated with clinical symptoms.92 
Disruption of ascending brainstem projection systems may soon prove detectable with 
network-based methods.123

Important network differences have emerged from comparisons between PD, PDD 
and DLB, with an opposite EEG-pattern of connectivity associated with dementia onset 
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(increased versus decreased connectivity). Interestingly, PDD and DLB changes were less 
severe though similar to those of AD with respect to the involvement of long-distance 
connections, although molecular in vivo and post-mortem studies do not support an 
Alzheimer’s etiology.119,124 With regard to long-distance connections, hub regions may 
play a key role.125 Posterior parietal regions are among the brain regions with the high-
est connectivity, consistent with their role as multimodal association areas.126 Damage 
to heteromodal association hub regions, as seen prominently in AD,56,75 may prove 
particularly disruptive by dis-integrating unimodal and polymodal representations 
that normally converge at hubs after being processed in secondary and association 
cortices.126 In PD cognitive symptoms are generally milder than in AD, and pathology 
targets the motor circuits, whose damage may have more restricted effects on whole 
brain connectivity.49 Future studies will likely elucidate whether the relatively preserved 
cognition in PD is explained by the relative sparing of cortical hub regions until late 
disease stages.115

Table 2. Connectivity disruption in the degenerative dementias

Alzheimer’s disease Frontotemporal 
degeneration 
(behavioural 
variant)

Parkinson’s disease Dementia with 
Lewy bodies

Functional connectivity

Resting-state 
functional 
MRI

Reduced 
connectivity—default 
mode network

Reduced 
connectivity—
salience network

Increased 
connectivity—
basal ganglia–
thalamocortical 
loops; normalisation 
after levodopa 
administration

Insufficient 
evidence

Resting-state 
EEG/MEG

Reduced 
connectivity—alpha 
and beta (8–30 Hz) 
range between 
long-distance fronto-
parietal and fronto-
temporal regions

Insufficient evidence Increased 
connectivity—alpha 
and beta (8–30 Hz) 
range locally and 
globally

Reduced 
connectivity—
alpha (8–13 Hz) 
range locally and 
globally

Structural 
connectivity 
(diffusion tensor 
imaging)

Reduced 
connectivity—
posterior and limbic 
white-matter tracts

Reduced 
connectivity—
anterior white-
matter tracts

No change in the 
major white-matter 
tracts

Reduced 
connectivity—
visual pathway

Network 
organisation

Change towards a 
different topology—
small-world to random; 
hub vulnerability

Change towards a 
different topology—
small-world to 
regular

Insufficient evidence No evidence

EEG=electroencephalography. MEG=magnetoencephalography.
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From a clinical perspective, further pursuit of network-based strategies may lead 
to the development of sensitive and specific biomarkers for diagnostic, prognostic, 
and disease-monitoring purposes. Although the reviewed studies were conducted at 
the group level, preliminary data about the sensitivity/specificity of network-derived 
markers seem promising. In AD, two studies have explored the accuracy of resting fMRI 
derived-markers to discriminate between AD patients and healthy elderly, reporting a 
sensitivity of 85% and a specificity of 77% using DMN connectivity,57 and a sensitivity 
of 72% and a specificity of 78% using the clustering coefficient.76 In the study by Zhou 
and colleagues,58 the combination of DMN and salience network activity allowed 100% 
separation of AD and FTD, although the performance of these measures remains to be 
tested in independent patient samples. Task-free fMRI and EEG/MEG techniques also 
offer practical advantages over existing biomarkers, such as PET and cerebrospinal fluid 
sampling. In general, these techniques are non-invasive and safe. Task-free fMRI data 
can be obtained in eight minutes and added to the structural MRI most patients receive 
as part of a routine dementia evaluation, creating minimal new costs for data acquisi-
tion. Moreover, fMRI and EEG/MEG can be repeated as often as necessary (within clinical 
trials, for example), without radioactivity exposure concerns. On the other hand, some 
practical limitations that might limit the clinical implementation of these techniques in 
the short period should be mentioned. The expertise to analyse these data is yet limited 
to few centres and the analysis itself is time-consuming.

Conclusions and future directions

Brain connectivity studies allow questions to be addressed that have so far escaped a 
convincing answer. For example, what is the mechanism whereby in AD the deposition 
of Aβ and HP-tau takes place in largely distinct but highly interconnected hub regions? 
Why damage to the whole network subsequently ensues? Similar questions apply to 
alpha-synuclein in DLB and tau, TDP-43, and FUS in FTD. Several working models for 
network-based molecular pathogenesis have begun to emerge. One parsimonious ac-
count contends that misfolded disease proteins first spread intraneuronally, like prions, 
by inducing misfolding of adjacent normally folded (or unfolded) proteins.127-130 This 
process may then move from pre- to post-synaptic cells via one of several transmission 
modes.127 Evidence supporting a prion-like mechanism has come from cellular and ro-
dent models of tau, alpha-synuclein, and Aβ disorders,127-129 as well as from patients with 
PD who received transplanted dopaminergic neurons from fetal donors only to develop 
Lewy bodies within those neurons a few years after transplantation.130 Other models 
emphasize the role of network-based dysregulation of excitation-inhibition balance 
(especially at the local microcircuit level),131 disruption of activity- or connectivity-based 
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inter-neuronal trophic factor support,132 and the long-term metabolic demands of high 
synaptic plasticity and turnover.133,134 These accounts need not be considered mutually 
exclusive and each presents a potential therapeutic target for exploration.

Finally, although the mechanisms noted above are built around the idea that networks 
constrain and determine the anatomical disease pattern, apparent network-based 
spread could emerge, in a network-independent manner, if individual nodes within 
each target network possessed differential vulnerability to the disease process, leading 
those nodes to succumb sequentially according to their vulnerability. These mechanistic 
considerations raise the question of whether neurodegenerative diseases should be 
considered primary diseases of networks. Alternatively, networks might be damaged 
and disrupted in these illnesses without representing the most relevant primary target. 
One ecumenical framework might suggest that these diseases begin by targeting se-
lectively vulnerable, region-specific neuron classes, such that early-stage disease is best 
considered a primary “neuron-opathy”. Next, the disease may spread within local mi-
crocircuitry, producing accentuated damage within the site of initial injury. Long-range 
disease spread, during a next phase, might be uniquely constrained by the long-range 
connectivity profile of the early-affected neurons and microcircuits, such that later-stage 
disease is most accurately regarded as a “network-opathy” and will require or benefit 
from treatments that target mechanisms of network-based disease propagation.

The analysis of functional networks is a multi-step procedure, in which methodological 
choices and assumptions must be made. The choice of the post-processing techniques 
such as artifact reduction, filtering, normalization, and nuisance variable regression can 
influence the results. Both ICA and seed-based analysis of fMRI data have technical and 
practical limitations that remain to be addressed and have been outlined in a recent 
review.135 Similarly, graph theoretical network investigation requires methodological 
decisions that can bias outcomes and conclusions. For example, appropriate statistical 
thresholding for network definition and extraction remains a critical issue for this ap-
proach.14 In addition, it is important to recognize that the spatial resolution of present 
EEG/MEG recording techniques poses limitations on the measurement of deep brain 
neuronal activity and therefore on the interpretation of the results.33 Finally, data about 
the sensitivity, specificity and reliability of task-free fMRI and EEG/MEG data are still 
limited.136 However, despite these important limitations, recent brain connectivity stud-
ies using different recording techniques and analytical approaches show converging 
results,137 suggesting that a more cohesive view of brain (dys)function in dementia may 
arise from the study of networks.

In broad terms, the study of functional network disruption in the degenerative demen-
tias is in its infancy. Some conditions, such as AD, have been widely investigated with the 
described approaches. Other illnesses, such as PDD and DLB, as well as FTD language 
variants, largely remain to be explored. In PD and DLB, a disease-specific ICA networks 
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has not yet been identified with task-free fMRI , but recent work suggests a link to a 
basal ganglia network, anti-correlated with the DMN, which might be affected in these 
disorders.123 Similarly, graph theoretical approaches may be used to assess functional 
changes in the PD spectrum. In addition, novel and more sophisticated approaches 
such as Bayesian network modelling may provide additional markers of connectivity by 
assessing causal relationships between nodes. Preliminary findings from the analysis of 
DMN with this method in AD look promising.138

In the coming years, technical improvements will help refine the topography of 
network degeneration. In addition, a complete understanding of network organiza-
tion will require knowledge of how brain structure influences brain function, and vice 
versa. Strictly speaking, functional connectivity is unrelated to anatomy, i.e. functionally 
connected regions may show no direct structural connection, although the presence of 
structural connectivity generally implies functional connectivity.139,140 For some brain re-
gions, a functional connection might be established by intermediate regions or through 
a common source that drives activity in both regions. Efforts are under way to integrate 
structural and functional connectivity into a common framework. Important advances 
are expected from a recently funded $40M NIH project, which aims to identify the brain 
network architecture by using advanced diffusion imaging with fMRI and EEG/MEG 
recordings (The Human Connectome Project; http://www.humanconnectomeproject.
org/).

How might increasing focus on functional brain networks lead to more effective 
dementia therapies? The first hope relates to patient categorization, and AD provides an 
illustrative example. Among healthy older persons without cognitive impairment, high 
levels of brain Aβ are suspected to represent preclinical AD.141 Pinpointing presymptom-
atic, Aβ-associated network disruption, as reported in several recent studies,142,143 might 
identify a subgroup most likely to benefit from a disease-modifying pharmacological 
treatment. Similarly, network analysis may provide sensitive markers of preclinical FTD 
(e.g., in gene mutation carriers) and help to distinguish patients on the PD-DLB spec-
trum. Other approaches may seek to recalibrate networks directly. Phase I trials of deep 
brain and transcranial magnetic stimulation targeting cognitive circuits have shown 
improvement of network-wide metabolic function or cognitive function in patients with 
AD.144,145 Finally, task-free fMRI and neurophysiological methods provide attractive can-
didates for longitudinal, disease-monitoring biomarkers due to the safe and repeatable 
nature of these techniques. Whether these methods will prove successful in detecting 
and monitoring clinical change is a question that awaits future studies. In light of cross-
sectional correlations between network connectivity strength and clinical severity,58,59 
cautious optimism seems justified.
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Search strategy and selection criteria

References for this Review were identified through searches of PubMed with the search 
terms “network”, “network dysfunction”, “connectivity”, “resting state functional MRI”, 
“electroencephalography, “magnetoencephalography”, “diffusion tensor imaging”, 
“tractography”, “dementia”, “neurodegenerative disorders”, “frontotemporal dementia”, 
“Alzheimer”, “mild cognitive impairment”, “Parkinson”, “Lewy bodies dementia”, “stroke”, 
“tumour” from 1986 until June, 2011. In addition, articles were identified through 
searches of the references of articles. Only papers published in English were reviewed. 
The final list of publications was selected by the authors on the basis of relevance to the 
topic.
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Panel 1: Glossary of basic network concepts

Network
A mathematical representation of a complex system made of a finite number of nodes and links. Many real-
world complex systems, such as biological, social, and neuronal systems, can be modelled as networks.

Node
A basic network element.

Link (or edge)
A connection between two nodes.

Neural network
A complex system whose node and links are represented by neurons and their
connections. Neural networks can be defined at many scales: microscopic (neurons and synapses), meso-scale 
(neural assembles and circuitry), and macro-scale (anatomical regions and fibre tracts). Connections can be 
either structural or functional. Node choice largely depends on the technique used. Common choices for 
imaging and neurophysiological techniques are grey-matter regions and electrodes.

Functional connectivity
The presence of functional connections between nodes (eg, synchronous neuronal oscillations). Functionally 
connected nodes might have no direct physical connection.

Structural connectivity
The presence of physical connections between nodes (eg, fibre tracts).

Module
Subset of network nodes with high internal connectivity.
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Panel 2: Glossary of graph theory terms

Graph
A visual representation of a network.

Graph theory
A branch of mathematics investigating network characteristics such as topology (ie, network structure), cost, 
efficiency, and robustness.

Degree
The total number of connections (edges) of a node. Can be averaged over the whole network to obtain a global 
measure of connection density or so-called wiring cost.

Hub
A highly connected node (ie, with a high degree). These nodes are relevant for efficient network 
communication, and damage to these nodes might be especially disruptive for network integrity.

Clustering coefficient
The interconnectedness of a node’s immediate neighbours (note that neighbouring nodes need not be 
anatomically proximal). Clustering coefficient values can be averaged over a region to obtain a measure of local 
connectivity.

Path length
The travel distance (number of intermediate links) from one node to another. Path lengths between all nodes in 
a network can be averaged to obtain the characteristic path length, which is a measure of global connectivity.

Small-world network
A network topology characterised by a high clustering coeffi cient coupled with a low characteristic path 
length. Investigators presume this network structure is optimum for efficient communication between regions, 
and it can be found in many real-world systems, including neural networks.

Random network
A network topology characterised by a lower clustering coeffi cient and a smaller
characteristic path length than small-world networks.

Efficiency
The inverse of the characteristic path length, which is thought of as a measure of
information processing capability.

Robustness
Resilience of a network against damage to nodes or links. This property is infl uenced by factors such as the 
degree, clustering coefficient, and the presence of hubs.

Modularity
Extent to which a network can be described as a set of interconnected subnetworks (modules). Modular 
networks are often efficient and robust, and many real-world networks (including neural networks) can be 
thought of as modular.
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Summary

In module 1 Alzheimer’s disease (AD), the most prevalent type of neurodegenerative 
dementia, is introduced as a rapidly increasing problem in our aging population. A thor-
ough understanding of the disease mechanism is lacking, and no effective cure exists. 
An essential aspect of cognitive processing is particularly poorly understood: the role of 
brain dynamics. Greater knowledge of how cognitive processes are coordinated in the 
brain might clarify the complex relation between observed structural brain damage and 
clinical symptoms in AD. 

The first step is to capture and describe large-scale brain dynamics in a reliable way. 
To provide a short background, basic neurophysiologic principles are outlined, rang-
ing from single neuron action potentials to synchronization between large groups of 
neurons. The concept of functional connectivity is introduced as a method to describe 
interaction between brain regions, and EEG & MEG are discussed as neurophysiological 
data acquisition techniques. A short, focused overview of the existing neurophysiologi-
cal literature in AD is provided. When describing large-scale brain dynamics, we find out 
that the brain is a complex dynamical system. Complex network theory is introduced as a 
method to interpret complex systems, and to explain how changes in network structure 
relate to changes in network function. It is argued that the application of concepts from 
network theory to neuroscientific patient data could help to better relate both structural 
and dynamical brain changes to cognitive symptoms.

To conclude this section, the aims and outline of this thesis are listed. 
In module 2, we report that resting-state brain activity as measured by MEG relative 

power is altered in a wide range of frequencies and different cortical regions in AD. 
The overall observed diffuse slowing of brain activity is in agreement with existing 
EEG literature, and adds more detail by demonstrating the regional heterogeneity in 
dynamical changes. However, since this approach does not take into account interaction 
between different regions, increases and decreases are hard to interpret. A large-scale 
network perspective is desired.

Module 3 starts with a description of functional network structure in resting-state 
EEG data, and shows that different types of dementia lead to different types of network 
disturbance: both AD and FTD patients demonstrate a loss of balance between local 
and global network connectivity (‘small-worldness’), but in opposite directions. This 
difference might reflect different underlying pathology, which could lead to useful diag-
nostic tests in the future. Next, an MEG study in AD patients is reported to show network 
disruption in more detail: again, a loss of small-world structure and a shift towards a 
more random network organization is observed. AD-related network damaged is also 
compared to two theoretical damage models: one of random damage, and one where 
highly connected hub regions are preferentially damaged. The last model resembles the 
damage in AD most, which suggests that hubs are especially vulnerable in AD. After 
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these demonstrations of local and global functional network damage, the third study 
in this section deals with an intermediate terrain where sub-networks or modules are 
investigated. In AD, a loss of modularity, a vulnerability of the parietal hub region, and 
a particular vulnerability of intermodular connections is found, which correlates with 
cognitive impairment. These studies illustrate a relevant relation between brain con-
nectivity and impaired cognition. 

Module 4 takes a different, more algebraic approach to describe network properties. 
Graph spectral analysis has proven its usefulness in other research areas, and has several 
methodological advantages compared to topological graph theory. With graph spectral 
techniques, we again detect large-scale network connectivity changes in AD, as well 
as differences in robustness and network synchronizability. Hub status of regions is 
examined again using eigenvector centrality, and the earlier reported hub status of the 
parietal region is confirmed.

The observed hub vulnerability in AD is an intriguing finding, and since a link between 
hub regions and amyloid deposition was reported, as well as a direct influence of exces-
sive neuronal activity on amyloid deposition, we hypothesized that the high connectiv-
ity level of hubs requires a high level of activity, and that this chronic, high activity of 
hubs makes them susceptible to degeneration. In short, we speculated that dynamics 
might have a causal role in AD pathogenesis.

To test this hypothesis, a computational neural mass model that is based on realistic 
human brain topography and dynamics was employed. We demonstrate in Module 5 
that brain hubs are indeed the most active regions, and that when regions are damaged 
based on their level of activity, model-generated data shows many neurophysiological 
hallmarks of AD, such as oscillatory slowing and a loss of functional connectivity and 
functional network disruption. These findings suggest that excessive neuronal activity 
indeed plays a significant role in AD pathogenesis. 

In this module a review of relevant recent literature discusses the important role 
of brain connectivity for our understanding of neurodegenerative dementias. Subse-
quently, the main outcomes of the studies in this thesis are summarized, and interpreted 
with regard to the original aims of this thesis and existing literature. This is followed by a 
discussion of the most relevant methodological considerations. In the final paragraphs, 
recommendations for future research are provided, and the section ends with a more 
personal view on the potential usefulness of the approach followed in this thesis. 
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General discussion

Main findings

The main aim of this dissertation is to explore the role of cerebral functional network 
topology in Alzheimer’s disease (AD). For this purpose, macro-scale functional network 
disruption in AD is described using neurophysiological data acquisition techniques 
(EEG/MEG) and concepts from modern network theory. Consequently, a relation 
between changes in network organization, cognitive status and structural damage is 
investigated. The overall conclusion of this thesis is that further examination the role of 
disturbed brain network activity and connectivity in dementia is significant: our study 
results suggest that this novel perspective will expand our understanding of cognitive 
disease mechanisms. In the following paragraphs, arguments for this conclusion will be 
discussed.

Key findings corresponding to the original aims of this thesis:
•	 Functional network topology is altered in AD at different scales: global network 

integrity decreases, communication between functional sub-networks or modules 
is disturbed, and highly connected network hub regions are especially vulnerable to 
damage. AD patients have a less robust and efficient system to maintain the fast and 
flexible brain dynamics that are required for cognitive processing. By representing a 
level between structural pathology and cognitive impairment, functional network 
analysis may also provide new clues about the disease mechanism itself.

•	 Diiferent forms of dementia (AD and FTD) show dissimilar functional network disrup-
tion, suggesting that network analysis can detect and discriminate different underly-
ing pathophysiological mechanisms. 

•	 Functional network integrity markers correlate with cognitive status as measured 
by neuropsychological testing, indicating the potential clinical relevance of altered 
functional network organization in dementia. 

•	 Computational modeling results strongly support an activity-driven neurodegen-
eration hypothesis of AD, which could have major implications for future research, 
diagnostic and therapeutic strategies. 

Factors considered important for evaluating the functional network approach in this 
thesis are explanatory power, practical feasibility and reliability of the analyses, as well 
as the ability to generate new hypotheses for future research. Therefore, this discussion 
is divided into three parts: first, an interpretation of functional network disruption in AD 
including a hypothesis about the disease mechanism is provided. Next, an overview is 
presented of the most relevant methodological choices and pitfalls. Finally, potential 
future directions are briefly outlined before reaching the final conclusive statements. 
While in the original articles most issues have been discussed in detail, here the key 
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aspects are highlighted in order to provide a more coherent overview of the value of 
graph theoretical functional network analysis in Alzheimer’s disease. 

Alzheimer’s disease: system failure?

Functional network disruption at multiple scales
Graph theory is applied to brain networks of very different spatiotemporal resolutions 
and sizes  [13,34,35]. These different levels of detail each offer an incomplete, limited 
perspective on the working human brain, but are all integrated into a single system [36-
39]. The contribution of EEG and MEG to our understanding of this system is a descrip-
tion of fast, large-scale brain dynamics. While the temporal resolution of EEG and MEG 
is very high, its spatial resolution is less precise. However, it is unlikely that descriptions 
of individual neurons or small neuronal assemblies would be the best level of detail to 
appreciate the overall coordination of brain-wide distributed cognitive processes. Based 
on literature, meaningful cognition-related dynamics in the brain often span multiple 
brain regions, and take place in the order of milliseconds. Therefore, investigating the 
relation between neurophysiologic activity of large-scale cortical regions and cognitive 
performance seems a justified approach. 

The main neurophysiological hallmark of AD found in literature is the diffuse, gradual 
slowing of oscillatory brain dynamics, expressed for example by changes in spectral 
power [5]. We show in Node 3 that there is a substantial regional heterogeneity in this 
oscillatory slowing: posterior regions are more strongly affected, and different frequency 
bands show different patterns, a finding that has been replicated in a recent EEG study 
[76]. Since we know that brain regions are not functionally isolated compartments, 
but highly integrated systems that influence each other, the observed heterogeneity 
in power change does not necessarily point to local characteristics, but probably also 
reflects interaction patterns within the whole system. Based on regional power analysis, 
it is impossible to discover which factor is the main cause of regional heterogeneity. We 
therefore need to explore interregional communication (or functional connectivity) to 
shed more light on the reasons behind these changes in AD.

The loss of global and regional synchronization in AD, as expressed by several functional 
connectivity measures, confirms previous studies and indicates that interregional com-
munication is changing as well [10,40]. Furthermore, frequency band-specific changes 
signify that functional connectivity is disturbed at various time scales in AD. Although 
interesting, the observed changes in functional connectivity are not self-explanatory. By 
describing connectivity disruption within the framework of network theory, AD-related 
changes in brain dynamics become more meaningful. To focus on disrupted network 
topology at different levels, we have opted to investigate network disruption at three 
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scales: global measures that describe overall network characteristics, intermediate 
measures that describe communities or sub-networks, and measures that describe 
individual node roles. Of course, these different network scales are closely related, and 
without any of them an incomplete picture would appear.

In Nodes 4 and 5, we have shown that global functional network architecture is dis-
rupted in AD. According to the Watts & Strogatz model, an optimal balance between 
local and global connectivity is considered to be the most effective network configura-
tion for information processing  [19]. In AD, we see that particularly the loss of local 
functional clustering leads to a disturbance of this balance, resulting in a more random 
network structure. This quantifiable ‘loss of structure’ makes sense; it is not just discon-
nectivity, but also less efficient connectivity; AD as a disorganization syndrome. The more 
dependent a network is on circulation of information and fast dynamics, the more its 
structure will influence its performance. In this regard, the brain seems even more highly 
dependent on network integrity than for example telecommunication or infrastructure 
systems, and thus network efficiency, as expressed by the Watts & Strogatz model, may 
form a key feature.  Nevertheless, it is also important to realize that although the Watts 
& Strogatz model represents a revolutionary step forward, it is not the ultimate network 
benchmark. For example, degree distribution, modularity, cost, growing processes and 
hierarchy are important network features that are not explained by this model. Just as 
the ‘small-worldness’, or balance between integration and segregation, is important  
[41], the relation between ordered and chaotic dynamics or wiring cost and efficiency 
might be equally important  [22,39]. In other words: although we find a loss of functional 
network efficiency in AD, it is probably not the whole story. 

Whereas global network measures show important overall characteristics, measures 
that focus on specific elements or parts give additional information. Within the global 
brain network, many parallel cognitive abilities are somehow maintained. Higher cogni-
tive functions make use of both local, specialized processing and long-range distributed 
interaction [77]. Different regions that are required for a certain cognitive task might 
thus form a temporary collective assembly with a common goal. For example, a tem-
porary link between neuronal assemblies in the occipital and temporal lobe might 
be needed to perform a task that requires visual recognition. Translated to graph 
theoretical terms, functional modules might be plausible candidates to describe these 
temporary collaborative sub-networks [26,49, 79]. Modularity has been an influential 
concept in various scientific fields [42,78]. In our work, we adhere to the graph theoreti-
cal definition. As argued in de discussion section of Node 6, detecting modules can be 
compared to the description of so-called ‘resting-state networks’ (RSN) in fMRI. The aim 
is similar: to describe functional regions or groups. As there a many different methods 
to identify modules or RSNs, results must always be interpreted with caution: different 
methods yield different results, a module might not reflect a specific cognitive function, 
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and the relation between different sub-networks or a module and the entire network 
might be just as important. For this last reason, graph theoretical modularity has an 
advantage over methods like independent component analysis (ICA) that are used for 
RSN detection, since the graph theoretical approach accurately quantifies the connec-
tivity between modules. In fact, we show that intermodular connectivity might be more 
informative with regard to AD-related cognitive impairment than the intramodular 
connectivity. Further exploration of modular characteristics therefore may clarify the 
regional coordination of cognitive processes.

As network nodes constitute basic elements of any graph or network, their definition 
in a specific context determines how the graph theoretical analysis results should even-
tually be interpreted [41]. In neurophysiological studies, nodes usually consist of large 
regions, containing millions of neurons. Within one node, many lower-level networks 
and circuits may exist, and two separate nodes may have a completely different ‘internal’ 
organization. Nevertheless, the role of these heterogeneous regions in a network can 
still point to important large-scale connectivity characteristics. The best example of this 
may be nodal differences in degree: the identification of hubs in brain networks has 
become a major subject in network-related brain research. In AD, we have shown that 
hub regions weaken, particularly those that connect different modules, and this has 
catastrophic consequences for the entire network integrity. Hub node vulnerability, and 
the observation that hub regions show a large overlap with AD-related pathology, can 
be considered a fundamental ‘connectopathic’ phenomenon in need of an explanation. 
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Figure 1. The striking overlap between cortical hub regions and amyloid deposition in Alzheimer 
patients. Source: Buckner et al., J Neurosci 29:6, 1860-73.

Summarizing, in AD brain networks are disrupted at different scales in time and space: 
overall functional organization, as expressed by small-world indicators and graph spec-
tral measures, becomes more random and less efficient. Moreover, clustering decreases, 
functional modules weaken, and connections between modules weaken. Third, influ-
ential functional nodes (hubs) lose their power, and many other nodal characteristics 
change in AD. These results are interrelated: when hubs lose influence, overall efficiency 
in the network goes down, and structure becomes less clear. Although AD-related net-
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work literature is still scarce, these main findings have been reported repeatedly now in 
both structural and functional studies  [30,43-46,80]. Therefore, we can conclude that 
AD is characterized by structural and functional brain network disruption.  

Functional networks and cognition
Increasing evidence is showing that there is a strong relationship between structural 
and functional brain networks and cognitive status. Brain networks alter during child-
hood  [13,47,48], keep changing throughout life  [4,49], and are influenced by experience 
and learning [50]. Impaired levels of consciousness, as in sleep or coma, are associated 
with differences in network structure [51-53]. Furthermore, IQ has been directly linked 
to network efficiency [54-56], and network properties seem to be inheritable to a con-
siderable degree [57]. Finally, in various neurological disease conditions, networks show 
marked changes as cognition deteriorates  [46,58-60]. These results provide compelling 
evidence for a strong relation between overall brain network structure and cognition, 
but do not address the question why specific cognitive domains are preferably impaired 
in AD. Therefore, the relation between specific network characteristics and cognitive 
domains should be investigated.

In our studies, we repeatedly found frequency band specific correlations between 
cognitive test scores and network measures (see Module 3). In Node 6 we demonstrate 
correlations between various modularity measures and specific cognitive functions 
that are typically impaired in AD. This is a fascinating finding, but the detection of these 
relationships is still not sufficient to pinpoint cognitive domains to specific patterns of 
connectivity. In this regard, it might be tempting to speculate about the exact cognitive 
function of a certain module, like memory or attention. Similar to resting-state networks, 
network modules or clusters have been linked to cognitive domains before  [61,62]. 
However, modules found in resting-state EEG or MEG data might also be a reflection of 
non-specific neuronal coordination, or perhaps even of irrelevant stationary brain activ-
ity. Although this first investigation of the relation between modularity and cognition 
looks promising, many more aspects can be examined, like for example module size, 
dynamics, structure, and hierarchy. Furthermore, since individual nodes represent entire 
cortical regions in EEG and MEG networks, they too might show specific relations to 
certain cognitive traits. And while these single nodes might not be sufficient to explain 
complex cognitive abilities, their dysfunction might on the other hand certainly disrupt 
cognition. Therefore, their relation to cognition should be further investigated in future 
studies.

Diagnosis and prognosis 
Even in specialized dementia centers that have the possession over new diagnostic tech-
niques like PET and CSF analysis, the definite diagnosis of specific dementia types can 



General discussion 199

be far from easy. At present the gold standard is pathological examination post-mortem, 
and even here so-called ‘mixed-pathology’ (for example containing both amyloid de-
position and vascular damage) is frequently encountered, frustrating a comfortable 
distinction between different forms of dementia [81]. The magnitude of variability and 
mismatch between the clinical picture and pathology in individuals is striking, and to 
make matters worse, many forms of dementia also show overlapping clinical symptoms. 
Even AD and FTD, two of the most common types of neurodegenerative dementia, 
can pose profound diagnostic difficulties. In FTD, imaging, cognitive and neurophysi-
ological examinations can remain within the normal range for a long time. Whereas in 
AD slowing of background patterns, decrease of the alpha peak and loss of functional 
connectivity are common findings by now, no such signs have been identified for FTD. A 
previous study of functional connectivity in FTD showed no clear changes [63]. However, 
it is conceivable that while overall functional connectivity levels remain stable, network 
organization changes. Therefore, graph theoretical analysis might be able to find group 
differences and thereby enlarge diagnostic certainty during life. Besides diagnostic 
accuracy and early detection, functional networks might be used as disease monitor-
ing and perhaps even prognostic indices. However, a strong relation of brain network 
measures with cognition and cognitive impairment does not automatically imply that 
graph measures will serve as powerful diagnostic or prognostic biomarkers.

From the amount of individual variability and overlap between individuals and groups 
we encountered in our graph analysis results, we can not expect to find highly sensitive 
and specific diagnostic indicators. In our results, we did find reasonable ROC-curve re-
sults for regional relative power in AD patients, comparable to the discriminative power 
of presently used neurophysiologic tests, but not strong enough to improve the present 
diagnostic markers.

An interesting observation was the number of differences we found between global 
functional network measures in AD and FTD groups. In AD, the shift of the functional 
network organization towards a more random type, was mainly caused by a decrease 
of local clustering, as expressed by the clustering coefficient. In contrast, FTD network 
organization changed in an opposing way, resulting in a more ‘ordered’ topology with 
relatively higher local clustering. A recent fMRI-based study by Zhou et al. showed simi-
lar results [64]. The finding that overall network structure becomes more random in AD, 
while it becomes more ordered in FTD also points toward an important fundamental 
notion: both in- and decreases in graph measure values can accompany pathological 
states. Since for example the balance between clustering coefficient and path length 
expresses a presumably ideal situation for information processing, deviations from this 
balance in both directions are considered less optimal. However, the observed differ-
ences were not strong and consistent enough for clinical use. 
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Figure 2. Three typical graph examples, based on the Watts & Strogatz model. Regular networks have 
high local connectivity, but low global connectivity. Random networks have opposite characteristics. 
Small-world network represent an optimal balance between these two extremes. The green arrows 
indicate the opposite shifts in network structure in AD and FTD. 

Since MEG is a patient friendly, relatively fast and non-invasive technique, it would 
make a useful clinical tool in the diagnostic work-up of AD. In a recent review, Zamrini et 
al. argue for a more prominent role of MEG [65]. It can well be that more refined graph 
analysis, task-based data and longitudinal analysis can improve diagnostic power; this 
should be subject of further studies. 

The graph spectrum
One reason for incorporating techniques that have proven their use in other fields might 
be specific desired qualities, such as a strong classification power. The identification of 
unique but consistent properties of individual brain networks could be of great impor-
tance for diagnostic and monitoring purposes. The use of alternative graph theoretical 
approaches becomes more relevant when there are limitations or methodological prob-
lems with the present ones. Although topological graph measures have initiated the 
explosion of network related studies, several practical issues have been raised by now, 
such as thresholding, normalization and measure selection (see also the Methodological 
Issues section below). 

Graph spectral analysis is known for its strong classification power, and has the advan-
tage over the ‘traditional’ topological graph measures that its use requires less arbitrary 
choices [66]. Moreover, different graph spectral measures are less intercorrelated, and 
therefore carry more unique, independent network information [28]. The notion that 
some of the spectral measures are closely related to the efficiency of dynamic processes 
on networks, such as synchronizability and information circulation, might form another 
advantage for our specific interest, since not many traditional graph measures are di-
rectly related to dynamical processes on networks. Network synchronizability based on 
the graph spectrum should not be confused with levels of synchronization between 
nodes, as described by functional connectivity measures: it is a global network feature. 
The topology of a structural network determines the ease and stability of global net-
work synchronization, and we examine these same qualities in relation to the functional 
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MEG-derived network topology. Results of the two synchronizability measures reported 
in Node 7, the spectral gap and the eigenratio, indeed point towards altered functional 
network synchronizability. 

One of the main findings of Node 5 was the hub vulnerability in AD. Since graph 
spectral analysis offers efficient ways to examine hub structure in networks, we imple-
mented eigenvector centrality computations in our analysis. This analysis confirmed the 
strong hub status of the parietal regions, and showed an interesting strong correlation 
between the loss of left temporal centrality and MMSE score, implying the clinical 
relevance of these findings. On the other hand, hub distribution was not completely 
similar to earlier degree centrality based analyses, which illustrates the fact that different 
definitions and algorithms lead to different results, requiring caution when interpreting 
study outcomes. 

Although graph spectral analysis showed several clear group differences, confirming 
topological analysis results, strong classification power was not possible based on the 
present resting state MEG data. Reasons for this might have been the amount of noise 
in neurophysiological data compared to other complex systems, the method chosen to 
obtain the underlying connectivity matrix, or the relatively modest network size (n=151). 
Of course, it should also be emphasized that the selection of graph spectral measures 
was motivated but inevitably arbitrary. Nevertheless, it is promising that with this com-
pletely different method significant group differences can be found, and that they are 
in line with results obtained using the more standard topological graph approach. In 
summary, the results so far and the theoretical benefits of graph spectral analysis justify 
additional investigation. Different methodological choices might be made, and different 
graph spectral measures or datasets may be investigated.

Early detection of Alzheimer’s disease
In AD research, early detection is an important topic for obvious reasons: more clarity 
for patients and caregivers, anticipation and more efficient organization of care, and 
furthermore it seems that interventional studies are most promising at an early stage. It 
is presumed that dementia pathophysiology is present in the brain for decades before 
initial symptoms appear, so much progress could be made here. The dominant amyloid-
cascade theory of AD states that problems start with local cellular processes, gradually 
spreading across the brain. And indeed, in particular amyloid-beta and tau levels in the 
brain and CSF have turned out to be fairly reliable early predictors of AD. However, the 
amyloid-based hypotheses do not offer an explanation for the vulnerability of specific 
brain areas in AD, do not predict the disease course, have an unclear link with risk factors 
and cognitive status, and interventions based on this hypothesis are disappointing. In 
short, it is not a very likely final theory of the AD disease mechanism. Hypotheses that 
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offer a more satisfying explanation of the non-random spread of pathology and its link 
to cognition should be taken seriously. 

Figure 3 depicts the presumed time course in which different biomarkers of dementia 
become abnormal. Note that in this model, biomarkers are either structural or clinical; 
markers of brain dynamics are missing. However, since cellular damage occurs within 
neurons and synapses, their function is inevitably altered. This means that accurate 
assessment of changes in brain dynamics might contribute to the early detection of 
dementia. But at what stage will this be possible; only after profound structural damage 
is done? Increasing evidence suggests the opposite: functional connectivity is already 
disturbed at a very early stage, before cognitive symptoms arise, and even before no-
table amyloid deposition can be detected with PET or CSF analysis  [67,68]. This does not 
only imply that changes in brain dynamics might lead to early detection, but also leads 
to the question whether dynamics are a consequence or cause of structural damage in 
the first place. In either case, early detection of functional changes might become an 
important topic in AD research over the next years.

Figure 3. Timeline of presumed biomarker conversion during the development of dementia. Note that 
markers of brain dynamics are not incorporated in this scheme. Source: Jack et al, Lancet Neurology 2010, 
9(1):119-128

Could it be that dynamical disturbance precedes and causes structural brain damage? 
There is support for this view from several angles:
•	 In many complex systems, dynamic activity can cause structural damage and global 

network dysfunction.
•	 In many human organs, chronic excessive activity can lead to pathologic damage, 

e.g. due to high metabolic demands and oxidative stress.
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•	 Brain dynamics and functional connectivity are altered in people at risk for or in 
early-stage AD [43,67,68,82,88-95,97,100].

•	 For the major risk factors of AD (age, ApoE status), direct associations with altered 
levels of brain activity have been reported [86,87,96,98,99] 

•	 Experimental animal studies show that excessive neuronal activity directly increases 
interstitial amyloid-beta concentration [70,71].

The potentially causal role of excessive brain dynamics in AD is explored in Node 8. In 
the following section, this hypothesis will be discussed further.

Activity dependent degeneration
While the accurate description of changes in brain network organization in patients may 
be an effective strategy for distinguishing groups or diagnosing disease, the observed 
changes do not necessarily explain underlying causes of cognitive (dys-)function. 
Abnormal patterns of network disruption may lead to new hypotheses of AD patho-
physiology, but may be hard to recognize within rich and complex datasets, and even 
harder to interpret. Also, to test causal mechanisms, direct interference with the brain is 
usually required, and in humans this is only rarely a viable option. For these purposes, 
computational network modeling studies may form a fitting complementary approach. 
Brain network models allow for endless manipulation and hypothesis testing: the effect 
of disease processes on brain networks can be simulated and investigated. The results of 
this approach can subsequently be used to make realistic predictions about pathophysi-
ology, to be verified in patient data. 

In Node 5 we described a loss of functional network structure in AD patients. To find 
out if the network damage could be explained by a simple principle, we tested two dif-
ferent damage models: a ‘random error’ and a ‘targeted attack’ model. In the targeted 
attack model, high degree nodes were damaged more strongly. We found that the 
targeted attack model better explained the AD-related network damage, which led us 
to conclude that AD somehow preferably targeted hub regions. Whatever made hubs 
different than other regions, besides their high level of connectivity, could be a potential 
clue about the disease mechanism. 

An obvious feature of hub regions could be high levels of activity and energy de-
mand, but this has never been reported. The only support for this notion was the high 
spontaneous activity levels of the well-known Default Mode network, which shows 
a large amount of overlap with cortical hub regions  [69]. But, even if hubs would be 
more active, a pathological effect of this activity needs to be explained. Recently, an 
AD-related pathologic effect of excessive levels of neuronal activity (increasing amyloid-
beta concentration) was described in transgenic mice  [70,71]. If the hub vulnerability 
phenomenon, the early connectivity changes and high activity of hub regions, and the 
evidence of excessive neuronal damage leading to neurodegeneration could be com-
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bined in a single coherent model, this might serve as an elegant explanation for hub 
vulnerability in AD. 

For this purpose, a computational neural mass model was developed that combines 
realistic structural connectivity (DTI-based) with EEG-like brain dynamics. The model 
simulates brain activity, and this activity can be analyzed in the same way as real data. 
An additional feature of the model is that it can be ‘damaged’ by a disease-simulating 
algorithm and that its output also includes spike density, a direct neuronal activity 
measure. Thus, in this computational model connectivity and activity is combined in 
a way that allows for testing our hypothesis, and therefore we implemented the ‘activ-
ity dependent degeneration’ (ADD) procedure (see Node 8). The main idea behind this 
was that excessive activity would make hubs vulnerable to AD, and we tested this by 
demonstrating that hubs were indeed the most active regions, and that by damaging 
the network according to activity level, we could reproduce all major common neuro-
physiological AD characteristics like oscillatory slowing, loss of power and functional 
coupling. Furthermore, the transient increase in spike density and functional connec-
tivity is in line with reports of increased activity in MCI, and implies that this is not a 
compensatory phenomenon, as is often suggested, but a pathologic one. In addition, 
ADD offers a possible explanation of the high levels of DMN activity. In healthy persons, 
the DMN is deactivated during cognitive tasks, and high DMN levels are only present in 
resting state conditions. In AD, this task-dependent deactivation is impaired, and DMN 
activity stays high [82].

The outcome of this study suggests that activity-dependent degeneration plays a 
causal role in the AD disease mechanism. However, it is still possible that other damage 
models might produce similar findings. Alternative damage models can be implement-
ed. On the other hand, it could also be that the ADD-principle is not specific for AD, but 
a general damage mechanism that also contributes to other disorders. To investigate 
the specificity of the ADD process, we compared it to a random damage model, but it is 
still conceivable that alternative models lead to similar findings.  Progressive non-hub 
damage, and subsequent re-routing of network activity might for example also cause 
hub region ‘overload’. Finally, the neural mass model we used could have been made 
more detailed, for example by adding higher resolution structural connectivity matrices, 
or directed links, which could also enhance the reliability and accuracy of the model. It 
is however important to emphasize that the level of detail in the model also depends 
on the hypothesis that is tested: for our global ‘hub versus non-hub’ comparison, more 
detail might not be required, and even potentially distracting.

The predictions made by this study should eventually be verified in experimental 
studies. Since direct investigation and manipulation of neuronal activity is easier in 
rodents, assessing detailed connectivity and activity data might be more feasible. In 
human studies, longitudinal EEG/MEG data combined with other structural (MRI/DTI), 
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functional (fMRI) and metabolism/pathology (PET) techniques may provide more indi-
rect support for the ADD hypothesis. Suppose there is truth in ADD, this could have 
wide implications for AD research: therapeutic strategies that are aimed at influencing 
neuronal activity might be a new target. This could be realized in different ways: for 
example, anti-epileptic medication can protect against neuronal hyperactivity and its 
consequences. Based on recent findings of a beneficial effect of levetiracitam (Keppra) 
on hippocampal hyperactivity and memory performance in transgenic mice, a recent 
study in amnestic MCI patients has shown similar results in humans  [72]. Non-phar-
maceutical approaches could be transcranial magnetic stimulation (TMS), transcranial 
direct durrent stimulation (tDCS), or deep brain stimulation (DBS). DBS is already applied 
successfully in depression, Parkinson’s disease and obsessive-compulsive disorder, and 
a small recent phase I trial in AD patients showed interesting results [73]. For monitoring 
the effects on neuronal dynamics and functional connectivity of any of these therapies, 
EEG/MEG-based functional network analysis would be a valid option.

Capturing dynamic networks: methodological issues

In the multi-step procedure ranging from the recruitment of patients to the interpreta-
tion of the analysis results many methodological decisions have to be made, and these 
choices can have a substantial influence on the final outcome. For a better interpretation 
of the findings in this thesis, our key methodological decisions and alternative possibili-
ties are discussed in this section.

Subject selection
For clinical studies, patients were recruited from the VU University Alzheimer Center. 
Dementia patients were required to have a recent diagnosis of mild-to-moderate 
Alzheimer disease according to the NINCDS-ADRDA criteria  [2]. Healthy persons who 
were willing to participate, often spouses of patients, underwent an extensive cognitive 
test battery to confirm their normal cognitive status. Although care was taken to ensure 
that patient and control groups were matched with regard to age, other factors made 
the group more heterogeneous. For example, gender was not equally distributed in all 
groups (although not significantly different), while recently gender-specific effects on 
network parameters have been reported  [3,4]. Furthermore, people with psychiatric 
or neurologic comorbidity were excluded, but we did include individuals with different 
types of psychoactive medication and cardiovascular disease. However, medication use 
and comorbidity was modest and equally distributed in both groups, and the popula-
tions in these studies were regarded to be representative for a tertiary memory clinic.

In our EEG study persons with subjective cognitive complaints (SMC) have been used 
as control group. One might argue that this can lead to underestimation of group dif-
ferences, since persons with SMC have been shown to have a higher risk to eventually 
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develop dementia. There are, however, also good reasons to use this control group: first 
of all, they have had the same thorough diagnostic work-up as the dementia patients 
(including brain imaging), which gives more confidence about their normal cognitive 
status than ‘healthy’ persons that have only had neuropsychological testing. Moreover, 
since we would like our results to be valuable for eventual clinical use, persons with 
SMC form a very appropriate control group, since any potential marker that gives a clear 
distinction between dementia patients and persons with SMC is of value.

Neurophysiological data recording and post-processing
A principal decision is the amount of EEG/MEG data that is selected for analysis. Re-
cordings often last at least 30 minutes, but final analysis in these studies was usually 
performed on 4 segments with a length of approximately 10 seconds per epoch. There 
are several reasons for this:

Artifacts. Every recording contains artifacts ranging from eye blinks, swallowing, 
movement, drowsiness or technical artifacts. The most efficient way to exclude artifacts 
is visual analysis by an experienced researcher, who is blinded to the diagnosis. Because 
of drowsiness, epochs were selected from the first minutes of the recording. This is 
particularly relevant in AD patients, where drowsiness occurs more often.

Reliability. Functional connectivity and graph theoretical analysis was always per-
formed on each time segment separately, and then averaged over the 4 segments per 
person to obtain a representative average. This allows for consistent averages, and 
enough data to reliably extract measures in all frequency bands [5]. In a recent MEG 
study, test-retest reliability was found to be adequate [6].

Data reduction. For simpler measures, entire datasets can be analyzed fast, but for 
more complex network measures such as modularity or coupling measures like the SL, 
computation time can increase rapidly. 

Another fundamental matter is the selection of frequency bands, instead of a broad-
band or very narrow band analysis. Based on neurophysiological literature, in which 
different frequency bands have been identified by their different behavior and relation 
to cognitive processes, we decided to adhere to the commonly used bands: delta (0.5-
4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), higher alpha (10-13 Hz), beta (13-30 Hz) 
and gamma (30-45 Hz). This division allows for a more meaningful interpretation and 
comparison with previous literature [83,84]. Although alternative choices may produce 
different results, of importance is that a wide range of frequencies is studied, since 
cognition may require the whole spectrum. Another branch of research is devoted to 
cross-frequency coupling, i.e. the interaction between different frequencies in the brain, 
like the theta-gamma rhythm binding in working memory [7].
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Functional connectivity measures
While the characterization of functional connectivity in the brain is a research area on its 
own, in this thesis it forms the basis on which graph theoretical network analysis is built. 
In general, since different coupling measures produce different connectivity matrices, 
they influence subsequent graph analysis results. Therefore, observed group differences 
based on a connectivity matrix derived from SL as coupling measure might not have 
been found using PLI and vice versa. To ascertain the robustness of results in this regard, 
various coupling measures could be compared. The influence of different functional 
connectivity measures on graph theoretical measures has not yet been investigated in 
a systematic way, and this is certainly a desirable future step. For most studies in this 
thesis, we used the Synchronization Likelihood (SL) as functional connectivity measure. 
The SL is a general measure of the correlation or synchronization between two time 
series, which is sensitive to linear as well as nonlinear interdependencies  [8,9]. In previ-
ous years, it has been used in many clinical studies  [10-14].

One of the most troublesome dilemma’s in neurophysiological studies is volume 
conduction, which refers to the fact that different EEG or MEG sensors are likely to pick 
up signals from the same underlying sources, which can lead to an overestimation of 
synchronization and thus confound graph results. To tackle this dilemma, different strat-
egies have been developed. One example is the Phase Lag Index (PLI) used in the MEG 
study in Node 5 [15]. The PLI discards any (near-) zero phase lag synchronization, and is 
thus not sensitive to volume conduction. However, with this it also discards meaningful 
small phase lag coupling. For graph methods that focus on clustering and modularity, 
this feature is a disadvantage: many true short range-links are ignored. At this moment, 
there is no perfect solution yet, although recent studies show that moving functional 
connectivity analysis from ‘sensor space’ (the signal as measured at the sensor) to ‘source 
space’ (the activity as estimated in the underlying source) may help to overcome this 
problem [16].

Once the mean level of functional connectivity between all network nodes (in our 
case EEG/MEG sensors) is established, this information can be combined into the con-
nectivity matrix, on which all further network analysis is based. Therefore, the reliability 
of the connectivity matrix is of great importance. Since different underlying functional 
connectivity measures can be used to construct the matrix (e.g. SL and PLI), different con-
nectivity matrices can be derived from the same data. This influences the final outcome, 
and to increase the reliability of their interpretation, the original underlying research 
question or particular topic of interest should be guiding the specific choices, and dif-
ferent functional connectivity measures should be compared to ascertain consistency.
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Graph theoretical analysis
Modern complex network theory, including the application of graph theory to complex 
networks, is under constant development  [17,18]. Since the seminal papers by Watts & 
Strogatz and Barabási & Albert, many new methods and measures have been proposed  
[19-21]. The clustering coefficient and characteristic path length, two basic properties 
proposed by Watts & Strogatz, have already undergone many adaptations and variations. 
For instance, the characteristic path length of a network is the average of the shortest 
path lengths between all node pairs. However, when a graph has disconnected points, 
this would mean the path length would approximate infinity. To solve this, one can take 
the mean of al inversed path lengths. But now, a higher path length value reflects a 
shorter path, which is quite counterintuitive (unless it is termed ‘nodal efficiency’ [22]). 
Therefore, taking the inverse of this number again produces a more intuitive path length 
value. There are more path length definitions, and some network scientists distrust the 
use of this measure in functional networks, because links between nodes, and therefore 
path lengths based on these links, could reflect an indirect interaction. These different 
views could be interpreted as signs of flexibility, but also of ambiguity in the network 
approach, and this methodological issue applies to other situations as well. 

For instance, in the studies presented here we make use of both weighted and un-
weighted graph measures, i.e. with and without taking the connection weights between 
nodes into account. Many graph measures have both weighted and unweighted vari-
ants. Although weighted networks preserve more information from the original con-
nectivity matrix, they possibly also contain noisy, spurious links and link weights. Since 
it is often impossible to separate noise from true connectivity, this will influence results. 
Although several approaches have been developed to tackle this problem, there is no 
perfect solution yet. One strategy is to convert the weighted connectivity matrix into 
a binary, unweighted matrix by applying a threshold and setting link weights below 
the threshold to 0 and those above to 1. The network now has become binary, and by 
discarding link weights there is a loss of information. In addition, the problem of using 
a threshold is that setting its height is arbitrary: with a low threshold there may still 
be many noisy links, and with a high threshold true connections might be erroneously 
ignored. Even more problematic, since many graph measures directly depend on net-
work size and density, the threshold height itself influences the results [23]. To explore 
the size of this effect, a range of thresholds could be examined (see for example [24]). 
When graph theoretical results are then found to be similar for different thresholds, the 
amount of distortion by thresholding might become acceptable.

Once the underlying connectivity matrix is determined, there is a wide range of graph 
theoretical measures that can be employed, and many of them have been described in 
this thesis. The development and application of new graph measures in neuroscience 
provides ample choice, but it also raises the question which (versions of ) measures 
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are the most appropriate or reliable ones. An illustrative example is modularity, where 
various algorithms exist that have different advantages [25-27]. Most graph measures 
are designed to describe a certain global, regional, or nodal characteristic of network 
topology, and therefore appear to be very specific and well defined. That this is not 
necessarily the case is illustrated by a recent study, which shows that graph theoretical 
measures that are supposed to describe different aspects of a graph (e.g. clustering and 
path length) can be strongly correlated [28]. This indicates that further studies to assess 
the consistency and reliability of various graph theoretical measures are needed.

Graph comparison
As the previous paragraphs show, graph theoretical analysis results depend on method-
ological choices. However, since networks are often ultimately compared between groups, 
the absolute values of graph measures might be less important than relative in- or de-
creases. Unfortunately, comparing networks can in fact complicate matters even further: 
for example, if a disease weakens connections, the resulting network will not only change 
in configuration but also in size and density. The different size leads to different graph 
results, so if the comparison should only be between network topology of groups, size and 
density should be similar. This has been the approach in several of our studies: networks of 
both groups were thresholded in such a way that the resulting graphs were at least equal 
in average degree (k), allowing for comparisons between network topology only. On the 
other hand, one might argue that the decrease of network size, and all its consequences 
for graph measure values is part of the disease, and should not be ignored by leveling the 
networks. This last option has become more attractive since it was shown that using a 
fixed k-based threshold is not optimal, since the influence of degree and density depends 
on the underlying graph topology, which is often not known a priori [23]. The authors also 
show that another often-used approach, which consists of normalizing graphs by compar-
ing them to a large set of random surrogate networks, may even increase the sensitivity to 
differences in degree and density and yield spurious results. 

To circumvent several of these methodological dilemmas, we investigated the possibilities 
of graph spectral analysis (see module 4). Since graph spectral measures are fully determined 
once the connectivity matrix is known, it can be considered a more parameter-free way of 
describing networks. The previously mentioned graph metric correlation study by Li et al. 
also found graph spectral measures to be more independent of each other, thus containing 
unique topological information. However, further studies are needed to assess reliability.

Methods, measures and hypotheses…
In this relatively new field, methodological ‘gold standards’ still have to be defined. 
Fortunately, regardless of the various methods used in this thesis, and of the diverse 
techniques combined with graph theoretical analysis in present literature, the major 
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part of AD-related studies show converging results [29,30]. This indicates that although 
the methodological issues described above deserve our interest, the graph theoretical 
approach still allows us to discern robust, relevant patterns of change in AD. Neverthe-
less, considering the rapidly growing availability of graph theoretical measures and 
methods, future studies that systematically compare different methods will become 
very important.

Whether a certain method will be suited also strongly depends on the specific research 
question or hypothesis: for example, when examining clustering and modularity, the 
use of the PLI to derive the connectivity matrix may not be advisable due to its relative 
underestimation of true near-zero phase lag synchronization, as was discussed in Node 
6. Thus, instead of applying every available graph measure to every imaginable situa-
tion, a major challenge will be to ask the right questions, formulate sharp hypotheses, 
and then make a motivated decision about the optimal graph theoretical strategy to 
test them.

Future directions

With the improving quality of imaging and neurophysiological techniques and the 
growing collection of graph theoretical tools, it seems that many new ways to investi-
gate functional network disruption in AD are within reach. A few of the most interesting 
and practically feasible directions are summed up below.

Clinical questions
Longitudinal studies in healthy persons, MCI patients and patients that suffer from 
any form of neurodegenerative dementia could be very helpful in tracking functional 
network changes over time. For monitoring therapeutic efficacy, pharmaceutical or 
non-pharmaceutical, a similar approach can be used. For early detection studies, func-
tional network analysis of healthy ApoE4 carriers or persons with subjective memory 
complaints may be an interesting next step. To relate functional network changes to 
brain structure and pathology, EEG/MEG results should be combined with MRI, DTI 
and PET. Besides resting-state studies, cognitive task-based paradigms can probably 
increase our understanding of the coordination of cognitive processes. The investiga-
tion of patients with reversible cognitive deficits, like in delirium or depression, 
could be informative. Stronger network classification procedures are highly desired, 
and graph spectral analysis could play a role here.

Methodological considerations
A systematic investigation of the influence of different functional connectivity 
measures on graph analysis results is an important next step, since this will make 
interpretation of network studies more reliable and meaningful. To be able to describe 
direction and causality in functional network, the development of functional cou-
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pling measures that are able to describe the influence of one node over another would 
be required. Furthermore, in our frequency band specific analysis, interaction between 
different frequencies is not accounted for, while this cross frequency coupling might 
be very relevant for cognitive processing. Instead of using the EEG/MEG signal as mea-
sured by the sensor for further analysis (sensor space), it is also possible to estimate 
source locations, and thus produce a more three-dimensional ‘source space’ image of 
functional network dynamics. An example of this approach is the recent study by Hil-
lebrand et al., which illustrated that using beamformer techniques, MEG data could be 
projected on a standardized anatomical template [16]. 

Conceptual challenges
The Watts & Strogatz model was a breakthrough in describing the overall efficiency 
of networks, but the balance between integration and segregation is only one aspect 
of many. A big challenge will be to implement major brain network features like 
small-worldness, modularity, scale-free degree distributions and hierarchy in one 
theoretical framework, so that network changes that are observed in disease condi-
tions may be interpreted better. For this purpose, successful models in different research 
fields might be helpful, and collaboration with other complex system sciences like 
economics, sociology or telecommunication may prove an effective strategy to find 
new, vital insights.



212 Node 10

“There are billions of neurons in our brains, but what 
are neurons? Just cells. The brain has no knowledge 
until connections are made between neurons. All that 
we know, all that we are, comes from the way our 
neurons are connected.”

Tim Berners-Lee 
Inventor of the World Wide Web

Conclusion

The quote above is not from a leading neuroscientist, but from someone with an entirely 
different background. One might object to the level of conviction with which he makes a 
statement outside his field of expertise. Others may argue that these kinds of alternative 
perspectives are exactly what we need in neuroscience: there seems to be no shortage 
of human brain connectivity data, but there is a lack of bright ideas about how to deduce 
fundamental principles and mechanisms from this rapidly growing mass of information.

In many complex system research fields, the perception that connectivity is a crucial 
part of a system’s performance, has inspired years or even decades of research, enabling 
major developments. In our increasingly connected society, many modern day phenom-
ena such as international travel, economical trade, telecommunication, internet and so-
cial networking all require knowledge of connectivity and network organization. Here, 
the large body of mathematical literature on network structure and function provides 
a versatile and solid theoretical background. In recent years, complex network theory 
has discovered shared fundamental motifs and principles between many very distinct 
systems.

In dementia research, connectivity analysis of the brain does not play a large role 
yet with regard to evaluation of cognitive function. Present etiological hypotheses, 
diagnostic and prognostic criteria and interventional strategies are primarily based on 
structural, pathological abnormalities such as protein deposition and atrophy. Unfortu-
nately, there is a substantial discrepancy between the severity of pathological damage 
and cognitive impairment in many individual cases, and the specific spread of pathology 
during neurodegenerative dementia only correlates with cognitive performance on a 
global level. Interestingly, one of the best structural correlates of cognitive impairment 
in Alzheimer’s disease is synaptic loss [1]; another clue that more insight in brain con-
nectivity will help us to understand and predict cognitive symptoms.

Of course, Tim Berners-Lee is not really the first person to point out the importance 
of connectivity in the brain. In a longstanding historic debate about the localization 
of cognitive function, great scientists such as Flourens, Wernicke, Cajal, Sherrington, 
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Lashley, Hebb, Varela, Edelman and Tononi have convincingly argued for a system-level 
approach to cognition [85]. Unfortunately, effective tools to observe and interpret cog-
nitive mechanisms directly in living humans have been lacking so far. However, due to 
the technical advances in neuroscience and recent breakthroughs in modern network 
theory, we might be getting closer to a tipping point, where accurate descriptions and 
interpretations of distributed brain function come within our reach, and where many 
old questions and ideas about cognitive (dys)function can finally be addressed with 
more precision.

At first, the application of concepts from network theory seems a complicating, 
abstract step away from biomedical reality. But the brain is a complex network, and 
should thus be studied with the appropriate tools. The main theme of this thesis is that 
approaching the brain as a network, and dementia as network failure, could contribute 
substantially to bridging the gap in our understanding between structural brain dam-
age and cognitive symptoms in dementia. Cognition is a distributed, dynamical process, 
and cognitive impairment is too. In a highly connected complex system, local damage 
often has global implications, and global dysfunction cannot be understood from a local 
perspective. 

One might argue that the aims of this thesis have not been very specific. This obser-
vation is justified, but in this very new research field having a wide scope might be a 
smarter strategy than trying to answer very specific research questions that later turn 
out to be misguided questions in the first place. Another rightful remark might be that 
our conclusion that a network perspective on dementia is useful is rather premature: the 
outcomes of these studies have not yet led directly to better diagnostic or prognostic 
tests, or to a substantially improved understanding of the causes of cognitive impair-
ment in dementia. At this point, we must acknowledge that there is plenty of room for 
improvement: there are several tough methodological issues, the observed group differ-
ences are not strong enough to produce sensitive diagnostic markers, and the relation 
between functional network features and cognition is not yet clear. However, it would 
be naive to expect that one or several of these major challenges would be resolved in 
the short time span of a few years. At this stage, finding the right tools and approaches 
to grasp the complexity of the brain is the most important goal. This dissertation is more 
about new options than about final answers.

The power of network theory in neuroscience is not just the interpretation of func-
tional brain networks, but applies in a much broader sense: for instance, it can be a 
powerful theoretical framework for exploring the symbiotic relation between brain 
structure and dynamics, combining results of different imaging/recording techniques, 
and bridging the gap between the micro- an macroscopic levels at which the brain is 
being investigated  [74, 75]. And, as mentioned before, the translation of successful 
strategies in other complex network fields to neuroscience can be aided by having 
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modern network theory as a common language and reference point. Inspired by other 
fields, more and more neuroscientists that are searching for straightforward underlying 
principles to describe the staggering complexity of the brain now seem to recognize the 
potential of network analysis, and perhaps this is the reason for the recent increase of 
network-related brain studies (see figure below). 

Figure 5 The number of brain connectivity, network and dementia related publications reported in the 
PubMed database in the last ten years, based on different combinations of keywords.

Hopefully, with this increased interest in brain connectivity, the realization that 
coordinated brain dynamics might be the missing link between pathology and clinical 
symptoms will re-emerge again among AD-researchers. Presently, the strong focus on 
structural, pathological approaches seems to distract many researchers from the fact 
that neuronal activity, although essential for cognitive processing, is largely neglected 
in AD research. However, brain structure and dynamics are so closely related that trying 
to study them in isolation will not lead to a complete understanding of cognitive impair-
ment. Hopefully, the combination of graph theory and neurophysiological techniques 
presented in this dissertation can contribute in bringing about a shift of focus towards 
the underestimated role of brain activity and connectivity in dementia research. 
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’In a network state of mind’ - de rol van cerebrale functionele netwerk topologie 
bij de ziekte van Alzheimer 

In module 1 wordt de ziekte van Alzheimer (AD) geïntroduceerd als een snel groeiend 
probleem in onze vergrijzende bevolking. Een fundamenteel begrip van het ziekteme-
chanisme ontbreekt, en tot op heden bestaat er geen doeltreffende behandeling. Het is 
onduidelijk hoe de geobserveerde structurele schade aan het brein exact samenhangt 
met de achteruitgang in cognitieve vermogens, en nieuwe invalshoeken die meer sa-
menhang kunnen aanbrengen zijn gewenst. Het is opvallend dat onderzoek naar de rol 
van hersenactiviteit bij dementie relatief klein is, terwijl dit een onmisbaar onderdeel is 
van een gezonde cognitie. Meer kennis over de coördinatie van lokale en globale cog-
nitieve processen, en de verstoring hiervan bij de ziekte van Alzheimer, kan bijdragen 
aan een beter begrip van de ziekte, en aan nieuwe diagnostische en therapeutische 
strategieën.  

Om dit doel te verwezenlijken is de eerste stap het nauwkeurig en betrouwbaar 
beschrijven van hersenactiviteit.  In deze thesis wordt gebruikt gemaakt van neuro-
fysiologische technieken, omdat zij een goede balans bieden tussen nauwkeurig-
heid en belasting voor de patiënt. Om een achtergrond te schetsen worden enkele 
neurofysiologische basisbegrippen besproken, zoals actiepotentialen, oscillaties en 
synchronisatie. Het begrip functionele connectiviteit wordt geïntroduceerd als methode 
voor het beschrijven van de interactie tussen hersengebieden, en de neurofysiologische 
meettechnieken elektro-encefalografie (EEG) en magneto-encefalografie (MEG) worden 
besproken. Een motivatie voor het gebruik van spontane, taak-vrije data ten opzichte 
van taak-gerichte data wordt gegeven, en tot slot volgt een kort overzicht van de rol van 
neurofysiologische literatuur in dementie tot nu toe.

Het doorgronden van de complexe patronen van activiteit en functionele connec-
tiviteit vormt een grote uitdaging. In plaats van de hersenen te beschouwen als een 
verzameling afzonderlijke, gespecialiseerde gebieden, leggen we de nadruk op de 
hersenen als systeem; hoe efficiënt en robuust is het netwerk als geheel? Grafentheorie 
wordt geïntroduceerd als een methode om uit te leggen hoe wijzigingen in de netwerk-
structuur betrekking hebben op wijzigingen in netwerkfunctie. Betoogd wordt dat de 
toepassing van concepten uit grafentheorie op neurofysiologische data kan helpen om 
dementie beter te begrijpen. Dit leidt vervolgens tot de algemene doelstelling van deze 
dissertatie: 

het beschrijven van veranderingen in functionele hersennetwerk organisatie 
bij de ziekte van Alzheimer met behulp van neurofysiologische technieken en 
moderne netwerktheorie, alsmede de relatie hiervan met de onderliggende pa-
thologie en bijbehorende klinische symptomen van AD.
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In  module 2 rapporteren we dat hersenactiviteit, beschreven met behulp van MEG 
metingen, bij patiënten met Alzheimer vertraagt. Dit was reeds geruime tijd bekend uit 
EEG onderzoek, maar in MEG data is nauwkeuriger te zien dat de vertraging verschilt per 
corticaal gebied. De oscillatoire activiteit van verschillende gebieden lijken dus in wisse-
lende mate te worden beïnvloedt door het ziekteproces. Echter, de gebruikte methode 
houdt geen rekening met de (vermoedelijk eveneens veranderende) interactiviteit tus-
sen verschillende regio’s, hetgeen een incompleet beeld oplevert. Een meer samenhan-
gend ‘netwerkperspectief’ zou wellicht kunnen helpen om de patronen van afwijkende 
hersenactiviteit en hersenfunctie bij de ziekte van Alzheimer beter te begrijpen.

Module 3 beschrijft de globale functionele netwerkstructuur op basis van EEG me-
tingen in gezonde mensen, patiënten met de ziekte van Alzheimer en patiënten met 
fronto-temporale dementie (FTD). Graaf theoretische analyse laat zien dat de verschil-
lende vormen van dementie leiden tot andere soorten netwerkverstoring: zowel AD als 
FTD vertonen een verlies van evenwicht tussen lokale en globale netwerkconnectiviteit, 
maar in tegengestelde richtingen. Dit verschil suggereert verschillende onderliggende 
hersenfunctiestoornissen, een gegeven dat tot meer begrip en nieuwe diagnostische 
tests kan leiden.

In de volgende studie wordt netwerkverstoring bij AD patiënten in meer detail weer-
geven met behulp van MEG: wederom wordt een verlies van optimale netwerkstructuur 
waargenomen.  AD-gerelateerde netwerkschade wordt daarnaast ook vergeleken met 
twee theoretische schademodellen: ‘random error’ of willekeurige netwerkschade, en 
een ‘targeted attack’ scenario waar vooral de sterk verbonden ‘hub’ gebieden worden 
beschadigd. Dit laatste model weerspiegelt de veranderingen in AD het best, hetgeen 
suggereert dat –om de een of andere reden – de sterk verbonden hersengebieden 
kwetsbaar zijn. 

Na deze focus op globale netwerkschade en de rol van afzonderlijke gebieden, 
wordt vervolgens gekeken naar een tussenliggend niveau: dat van sub-netwerken 
oftewel modules. In AD wordt een verlies van globale modulariteit, kwetsbaarheid van 
de pariëtale hub-module, en vooral een sterke beschadiging van intermodulaire ver-
bindingen gevonden, welke ook correleren met de sterkte van aanwezige cognitieve 
stoornissen. Deze studies illustreren een relevante relatie tussen verstoorde functionele 
netwerken en cognitieve symptomen.

Module 4  illustreert een alternatieve methode om netwerkeigenschappen te 
beschrijven: graaf spectrale analyse. Deze methode heeft zijn nut in andere onder-
zoeksterreinen bewezen, en heeft als methodologische voordelen ten opzichte van de 
eerder beschreven aanpak dat de netwerkeigenschappen minder arbitraire parameters 
hebben, en dat een aantal eigenschappen specifiek betrekking hebben op dynamische 
processen in netwerken . Met behulp van deze techniek detecteren we opnieuw verlies 
van efficientie in de netwerken van AD patiënten, evenals verschillen in robuustheid en 
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informatie circulatie.  De graad van verbondenheid van regio’s wordt met behulp van 
‘eigenvector-centraliteit’ onderzocht, en de eerder beschreven centrale rol van de sterk 
verbonden pariëtale regio wordt hier nogmaals bevestigd. De links temporale regio is 
opvallend kwetsbaar, en dit hangt samen met slechtere MMSE scores.

De waargenomen ‘hub’-kwetsbaarheid in AD (module 3) is een intrigerende maar nog 
onverklaarde bevinding. Aangezien in recente studies een relatie tussen hub-status en 
mate van amyloïd-depositie in corticale gebieden werd gelegd, en er onlangs een direc-
te invloed van overmatige neuronale activiteit op amyloïd-depositie is gerapporteerd, 
veronderstelden we dat de hoge connectiviteit van hub gebieden een gemiddeld hoge 
activiteit vereist, en dat de chronische, hogere activiteit van sterk verbonden corticale 
gebieden ze gevoelig maakt voor degeneratie. Kortom, we speculeerden dat excessieve 
dynamiek zelf mogelijk een oorzakelijke rol in de AD pathogenese zou kunnen hebben.

Om deze hypothese te testen ontwikkelden we een computationeel model dat ge-
baseerd is op realistische hersenconnectiviteit en -dynamiek. We laten zien in Module 
5 dat hersenhubs inderdaad ook de meest actieve regio’s zijn, en dat wanneer regio’s 
worden beschadigd aan de hand van hun activiteitsniveau, de door het model gege-
nereerde schade veel kenmerken van AD-gerelateerde schade vertoont, zoals globale 
vertraging, verlies van functionele connectiviteit, en  vergelijkbare functionele netwerk 
verstoring. Dit suggereert dat excessieve neuronale activiteit inderdaad een rol in het 
ontstaan van Alzheimer speelt.

Module 6 begint met een review van relevante netwerk-gerelateerde literatuur in 
dementia, waarin net als in Module 3 wordt betoogd dat functionele netwerk verstoring 
verschilt tussen de diverse vormen van dementia, hetgeen consequenties  kan hebben 
voor de diagnostiek, prognostiek en therapie van dementie. Vervolgens bespreekt 
deze sectie de belangrijkste resultaten van dit proefschrift, en probeert deze in een 
breder kader te plaatsen. Terugkijkend naar de doelstelling van dit project kan worden 
geconcludeerd dat het beschrijven van verstoorde hersennetwerken bij dementie een 
aantal nieuwe gezichtspunten oplevert, zoals het verlies van een efficiënte functionele 
netwerkstructuur, verlies van modulariteit, de verschillende typen netwerkschade bij 
AD en FTD, en de kwetsbaarheid van sterk verbonden gebieden in AD. Deze conclusie 
wordt gevolgd door een bespreking van relevante methodologische kwesties zoals 
volume conductie en obstakels in de graaf-theoretische analyse. Daarnaast worden en-
kele concrete suggesties voor toekomstig onderzoek gedaan, en de algemene discussie 
eindigt met een beschouwing van het mogelijke nut van de aanpak in deze thesis, en 
een pleidooi voor dit type onderzoek bij dementie.
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In de eerste plaats wil ik alle patiënten en vrijwilligers die hebben meegewerkt aan dit 
onderzoeksproject hartelijk danken; uw inzet heb ik zeer gewaardeerd! 

Beste Kees, een kleine zes jaar geleden woonde ik een voordracht van je bij over – de 
toen nog compleet onbekende – netwerkanalyse van EEG data. Ik herinner me dat ik 
niet alles helemaal kon volgen, maar dat ik wel meteen het gevoel kreeg dat hier iemand 
echt met iets innovatiefs en avontuurlijks bezig was. In de afgelopen jaren is dit gevoel 
van bewondering alleen maar verder gegroeid. Ik ken niemand die op zo’n indrukwek-
kende en creatieve manier de kennis van verschillende vakgebieden aan elkaar koppelt, 
met ideeën die de gemiddelde neuroloog draaiduizelig achterlaten, en die doorge-
winterde technici voorzien van het nodige biologisch gezonde verstand. Niet-lineaire 
dynamica en moderne netwerktheorie koppelen aan klinische neurofysiologie is één 
ding, maar ook nog je eigen software hiervoor ontwikkelen en het geheel begrijpelijk 
kunnen uitleggen aan spartelende promovendi is wat anders! Ik voel me vereerd dat ik 
onder de hoede van één van de grondleggers van deze tak van onderzoek een bijdrage 
heb mogen leveren, en voel me nu ook een beetje baanbrekend. Ik hoop van harte dat 
we in de toekomst opnieuw kunnen samenwerken, en dat ik dan ook eens een keer een 
heel goed idee krijg.

Beste Philip, waar sommigen jaren hard moet nadenken om een beetje grip te 
krijgen op netwerken, zijn anderen geboren netwerkers. Jouw humor, enthousiasme 
en visie zijn aanstekelijk, en ik heb geregeld meegemaakt op congressen dat mensen 
een beetje glazig uit hun ogen begonnen te kijken als ik iets vertelde over de MEG, 
om vervolgens enthousiast op te veren als ik noemde dat ik in ‘the Scheltens group’ 
zat.  Ik ben je erg dankbaar voor het geschonken vertrouwen om dit project te kunnen 
uitvoeren, en natuurlijk om deel te mogen zijn van je swingende team. De afgelopen 
jaren waren zonder twijfel de leukste uit mijn carrière tot nu toe, en alle geboden kansen 
hebben zich rechtstreeks uitbetaald bij het tot stand komen van dit proefschrift; van de 
laptop waarop het is getypt tot de auteurs waarmee je me in contact hebt gebracht. De 
afgelopen jaren hebben me ervaringen gebracht die ik niet snel zal vergeten, varierend 
van het gezamenlijk vertolken van Schubert liederen (weet dat ik hier nog steeds video-
materiaal van bezit!) tot het ’s avonds cocktails sippen in Honolulu.

Beste Wiesje, naast ‘Occam’s Razor’, het principe dat uit een aantal mogelijke hypo-
thesen degene met de minste aannames de voorkeur heeft, zou ik graag ‘Wiesje’s Razor’ 
willen introduceren: als je denkt dat je stuk staat als een huis voordat Wiesje ernaar heeft 
gekeken, maak je een gevaarlijke aanname! Jouw analytische scherpte en kritische blik 
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worden alom – zeg maar gerust - gevreesd, en ik kan daar nog veel van leren. Daarnaast 
vind ik het indrukwekkend om te zien hoe je bij het begeleiden van deze dynamische 
groep onderzoekers met uiteenlopende projecten én persoonlijkheden het overzicht 
en overwicht weet te behouden. En... ik heb natuurlijk zeer genoten van onze muzikale 
uitstapjes!

Ik zou graag de leden van de leescommissie hartelijk willen danken voor de moeite die 
zij nemen om dit proefschrift te evalueren en de verdediging ervan bij te wonen: prof. dr. 
S.A.R.B. Rombouts, prof. dr. M.J. van Putten, prof. dr. J.J. Heimans, dr. F. Maestu, dr. Y.A.L. 
Pijnenburg, en dr. M. van den Heuvel.

Maria ‘heeee buurman’ Boersma, netwerk-buddy van het eerste uur: hoewel we 
elkaar de laatste tijd minder hebben gezien, hebben wij voor mijn gevoel de meeste 
netwerk-inhoudelijke discussies gevoerd, waarbij jij uiteindelijk vaak nog nét een 
kritische vraag op wist te werpen die ik alleen nog maar kon pareren met: “misschien 
moeten we dat nog eens met Kees bespreken...”. 

Hanneke, fijn dat jij mij samen met Maria mentaal wil ondersteunen als paranimf, 
maar waar is mijn poster-koker eigenlijk gebleven?

Alle VUmc netwerk-pioniers! Linda, Menno, Eelco, Kim, Edwin, Prejaas, Bernadette 
en nog vele anderen... We kennen allemaal het moedeloze gevoel als de clustering coef-
ficient en padlengte weer iets heel anders doen dan we hadden verwacht, maar we 
komen er wel uit! Later zullen ze ons wegbereiders noemen!

Iedereen bij het Alzheimercentrum (teveel om op te noemen): bedankt!

Alle medewerkers van de afdeling klinische neurofysiologie, in het bijzonder Bob 
van Dijk en Arjan Hillebrand, hartelijk dank voor jullie inzet en ondersteuning op tech-
nisch en organisatorisch vlak!

Onze netwerk-broeders van de TU Delft: prof. Piet Van Mieghem en zijn groep met 
Huijuan Wang, Dajie Liu, Cong Li…ons contact was voor mij erg interessant en leerzaam 
en heeft een paar mooie publicaties opgeleverd!

Alle neuropsychologen die heben meegewerkt aan dit project: Sietske (nog bedankt 
trouwens voor de promotie to-do list, zonder deze was ik nu waarschijnlijk nog niet eens 
begonnen!), Lieke, Annelies, Ellemarije, Astrid, Sofie, Nicole… bedankt voor jullie grote 
inzet bij het testen van alle proefpersonen!
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Alzheimer Nederland en ISAO wil ik graag hartelijk danken voor de financiele onder-
steuning, die o.a. internationaal congresbezoek mogelijk heeft gemaakt.

Maria Eugenia López, thank you for bringing your Spanish temperament to cold 
Amsterdam, I do hope you have turned into a ‘MEG-believer’ by now…

Emi Saliasi, bedankt voor je hulp en alle grappige verhalen!

Kat Mott, the work you did while you were here was truly quite impressive, and wit-
hout your early experiments our PLoS paper would not be the same. Thanks!

Guido, ik heb erg genoten van onze fantasieen over netwerk-visualizatie software. Dat 
we dan geregeld uitkwamen bij computerspellen die je met je hersens kunt besturen 
of machines die gedachten lezen en/of beinvloeden mocht de pret niet drukken! Ons 
‘Thoughtweaver’ project – door jou gerealiseerd- was leerzaam op allerlei onvoorziene 
manieren.

De afdeling ICT van het VU medisch centrum wil ik graag hartelijk danken voor alle 
geboden ondersteuning bij mijn overstap van Windows naar OS X!

Rianne van Strien van Optima Grafische Communicatie bedankt voor het maken van 
de prachtige layout van dit boekje, en voor het doorvoeren van de vele correcties (en de 
correcties op de correcties…)!

Mijn nieuwe collega’s van de afdeling neurologie van het VUmc! Ik had verwacht dat 
ik flink zou moeten overschakelen na het doen van dit geweldige project, maar ik voel 
me nu al thuis; we gaan er wat moois van maken!

Brad Mehldau, Oscar Peterson, Franz Liszt, Johan Sebastiaan Bach, de Beatles, Jimi 
Hendrix, Esperanza Spalding, Donny Hathaway, Stevie Wonder en bovenal Prince: be-
dankt voor jullie muzikale ondersteuning bij het schrijven van dit proefschrift.

Bouw, bedankt voor het lachen om al mijn slechte grappen sinds 22-11-2002!

Zoë Zwaantje…ik had al zo’n voorgevoel dat 2012 een enerverend jaar zou gaan 
worden, maar jij deed er nog een paar schepjes bovenop! 

Pap & Mam, zonder jullie...
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network: a group or system of interconnected elements
networks are everywhere around us and inside us

they are much more than the sum of their parts,
and create new levels of meaning:

 
cognition emerges from our interconnected neurons

 
a face emerges from the words on the front cover

a new perspective on Alzheimer emerges from the words inside
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